

3D Crustal Structure of Central Alborz, Iran Using Local Earthquake Dataset

Mohammad Tatar

Professor, Seismology Research Center
mtatar@iiees.ac.ir

Saeed Soltanimoghadam, Farzam Yaminifard

تعیین ساختار سه بعدی البرز مرکزی به کمک توموگرافی لرزه‌ای زمین‌لرزه‌های محلی

محمد تاتار

استاد پژوهشکده زلزله‌شناسی
mtatar@iiees.ac.ir

سعید سلطانی مقدم، فرزام یمینی‌فرد

In recent years, advances in new methods and equipment have led to significant developments in Earth sciences. Seismology is not an exception and it has progressed rapidly along with other sciences. In this respect, recent advances in the production of modern, high precision and sensitive seismic devices, as well as the application of sophisticated algorithms in determining and calculating the physical properties of the earthquake and the Earth structure, have been remarkable. Iran has long been one of the most seismically active regions in the world and has always been the focus for geoscience investigations. Diversity in different parts of this zone, and including two continental collision zones has given it a special place for active tectonic studies and conducting seismological researches. The importance of such studies will be doubled when one considers that earthquake is one of the most dangerous natural disasters in Iran. A large number of significant earthquakes occur in different parts of the world annually and unfortunately, some of them occur in densely populated areas. But by reviewing past events and looking at the history of each region, the effective role of earthquakes in causing many deaths and devastations is significant. In Iran, devastating earthquakes have repeatedly threatened the lives and property of the people and sometimes caused severe damages. Alborz is an example of such areas where earthquakes have always caused many casualties and financial losses. The high population of Alborz in comparison to other parts of Iran, and especially the metropolitan area of Tehran, locating in this zone, makes it very important for conducting studies concerning social, political and crisis management aspects. In recent years, the controversy Tehran surrounding earthquakes has become an important issue for national authorities, which emphasizes on the importance of studying this natural event. Providing comprehensive seismotectonic model of Alborz for accurate and more realistic seismic hazard assessment of this zone requires sufficient documented data of different seismic zones, including an appropriate knowledge of crustal velocity structure, active faults geometry, size, and mechanism, as well as earthquakes properties such as hypocenter location, focal depth, fault plane solution and

ایران از دیرباز به عنوان یکی از لرزه‌خیزترین مناطق دنیا، همواره مورد توجه پژوهشگران علوم زمین بوده است. همچنین وجود تنوع تکنیکی در بخش‌های مختلف این پهنه، جایگاه ویژه‌ای از لحاظ بررسی، تحلیل و انجام مطالعات لرزه‌زمین‌ساختی و زلزله‌شناسی به آن داده است. اهمیت چنین مطالعاتی هنگامی دو چندان خواهد شد که زلزله را به عنوان یکی از پرخطرترین حوادث طبیعی در نظر گرفت. با مرور حوادث گذشته و نگاه به تاریخ هر منطقه، نقش مؤثر زمین‌لرزه‌ها در مواردی که باعث مرگ و میر و ویرانی‌های زیادی شده‌اند، نه تنها کم نیست، که چشمگیر نیز بوده است. ایران نیز از این قائده مستثنی نبوده و زمین‌لرزه‌های ویرانگری بارها و بارها جان و مال مردم را تهدید کرده و بعضاً آسیبهای جبران ناپذیری وارد نموده اند. تمرکز بالای جمعیت در البرز نسبت به سایر مناطق ایران، و خصوصاً قرار گرفتن کلان شهر تهران در این زون، اهمیت بررسی و انجام مطالعات مختلف در بخش‌های اجتماعی، سیاسی و مدیریت بحران را، کاملاً روشن می‌سازد. در سالیان اخیر بحث مربوط به زمین‌لرزه تهران، بیش از پیش مورد توجه مسئولان کشور بوده و همین امر به اهمیت مطالعه این رویداد طبیعی می‌افزاید. چنانچه داده‌های کافی و مستند از پهنه‌های لرزه‌زمین‌ساختی، با پیویگری‌های لرزه‌ای مشخص، از قبیل ساختار سرعتی پوسته، هندسه و ابعاد گسلها، مکانیسم کانونی چشممه‌های لرزه‌زا... در دسترس باشد، امکان ارائه مدل (مدل‌های) لرزه‌ای همراه با تحلیل و ارزیابی پیامدهای آن به گونه نزدیک به واقعیت، فراهم خواهد شد.

در پژوهش حاضر، ابتدا بانک داده‌ای مشتمل بر تمامی اطلاعات لرزه‌ای ثبت شده در شبکه‌های لرزه‌نگاری موقت و دائم در بازه زمانی سال‌های ۱۹۹۶ الی ۲۰۱۹ میلادی، جمع‌آوری شد. این بانک داده شامل داده‌های زمین‌لرزه‌های به ثبت رسیده در سه شبکه لرزه‌نگاری دائم و چهار شبکه لرزه‌نگاری موقت و دربرگیرنده بیش از ۱۹ هزار زمین‌لرزه رخ داده در گستره البرز مرکزی است. این بانک پس از انجام مراحل پردازشی مختلف مانند تشخیص رویدادهای مشترک میان کاتالوگ‌ها، ادغام داده زمین‌لرزه‌های مشترک، حذف فازهای پرت و حذف رویدادهای انفجاری، به عنوان کامل‌ترین مجموعه قابل دسترس از زمین‌لرزه‌های البرز مرکزی، معرفی می‌گردد. در دومین گام، مدل سرعتی یک‌بعدی به منظور دستیابی به یک ساختار سرعتی ساده و عین حال قابل اطمینان در کل گستره البرز مرکزی با استفاده از بانک داده تهیه شده در مرحله قبل، محاسبه گردید. در آخرین فصل این پژوهش نیز، ساختار سرعتی سه‌بعدی پوسته البرز به شیوه توموگرافی زمین‌لرزه‌های محلی، محاسبه و مورد بحث و تفسیر مفصل قرار گرفت.

از مهم‌ترین دستاوردهای این پژوهش، ارائه کامل‌ترین بانک داده زمین‌لرزه‌های گستره البرز مرکزی از ابتدای سال ۱۹۹۶ تا انتهای سال ۲۰۱۹ میلادی

magnitude. Certainly, an important aim of this study is to take advantage of the latest achievements in seismological studies for precise investigation of the natural seismic events properties in the Central Alborz and to provide preliminary parameters for future studies in this area. For this purpose, databases consisting of all seismic data recorded by temporary and permanent seismic networks were collected for the period 1996 to 2019. The database contains local and regional earthquakes recorded by three permanent and by four temporary seismic networks, comprising more than 19,000 seismic events, occurred in the Central Alborz. After pre-processing steps such as merging of common events between different catalogs, joint earthquake data integration, removing outlier phases, and elimination of explosion events, the most complete and reliable dataset for the central Alborz earthquakes was achieved. In the second step, the one-dimensional velocity model was calculated in order to obtain a simple yet reliable velocity structure over the entire Central Alborz, using the dataset provided in the previous step. Comparison of the statistical results of the location parameters shows improvement of location and reduction of location errors and RMS. The resulting P-wave velocity model obtained based on Fuzzy Self-Tuning Particle Swarm Optimization algorithm (FST-PSO) comprises an upper crust with 6 km and 4 km thick sedimentary layers having P wave velocities (V_p) of ~ 5.35 and $\sim 5.8 \text{ km s}^{-1}$, respectively, above two 6 km thick layers of upper crystalline crust ($V_p \sim 6.0$ and $\sim 6.15 \text{ km s}^{-1}$ respectively). Considering a Moho depth of ~ 54 km from previous studies, the lower crystalline crust is ~ 32 km thick ($V_p \sim 6.40 \text{ km s}^{-1}$).

In the third step of this research, the three-dimensional velocity structure of the central Alborz has been calculated, discussed and interpreted using local earthquake tomography. Positive and negative velocity anomalies in the southern and northern Alborz is remarkable and show a good consistency between geological data and velocity structure in the first few kilometers of the crust. Detecting low-velocity masses associated with the volcanic activity in the central and western part of the central Alborz is one of the important achievements of this study which, while enhancing our knowledge of the Alborz upper crustal velocity structure, demonstrates both significant adaptation to previous studies and new challenges on various issues.

The most important achievements of this study can be summarized as follow:

است که مشتمل بر ۱۹۶۴۳ زمین لرزه می باشد. در بخش مدلسازی ساختار سرعت یک بعدی، علاوه بر ارائه یک روش نوین به منظور محاسبه مدل سرعتی یک بعدی در مقیاس منطقه ای، برای نخستین بار مدل سرعتی یک بعدی بهینه برای گستره البرز مرکزی ارائه گردید. مقایسه نتایج آماری این مدل با مدل های محاسبه شده در مطالعات قبلی، نشان از بهبود موقعیت مکانی و کاهش خطای مکانیابی رویدادهای بازمکانیابی شده در منطقه مورد مطالعه دارد. مدل یک بعدی جامع محاسبه شده برای ساختار سرعتی البرز مرکزی می تواند به منظور موقعیت مکانی و کاهش خطای مکانیابی رویدادهای لرزه ای این منطقه، توسط شبکه لرزه نگاری کشوری، مورد استفاده قرار گیرد. مدل سرعتی یک بعدی محاسبه شده برای البرز مرکزی به روش الگوریتم بهینه سازی از دحام ذرات (FST-PSO) شامل یک لایه به ضخامت ۶ کیلومتر و سرعت $5/35$ کیلومتر بر ثانیه، واقع بر روی لایه ای به ضخامت ۴ کیلومتر و سرعت $5/80$ کیلومتر بر ثانیه است. این دو لایه معرف پوشش رسوی منطقه می باشند. در زیر این دو لایه، پوسته بلورین است که خود مشکل از دو لایه با سرعت $6/00$ و $6/15$ کیلومتر بر ثانیه و ضخامت برابر ۶ کیلومتر برای هر لایه می باشد. مجموعه فوق بر روی پوسته بلورین تحتانی با ضخامت ۳۲ و سرعت موج P $6/40$ کیلومتر بر ثانیه قرار می گیرد. همچنین با بکار گیری بانک داده جامع زمین لرزه های منطقه البرز مرکزی، ساختار سرعتی سه بعدی البرز مرکزی به شیوه تومو گرافی زمان سیر زمین لرزه های محلی محاسبه گردید. مشاهده ناهنگنی های شدید سرعتی در نیمه جنوبی و شمالی پوسته بالایی البرز، تطابق قابل توجه میان داده های زمین شناسی و ساختار سرعتی در چند کیلومتر ابتدایی پوسته و مشاهده توده های کم سرعت مرتبط با بالا مدمگی ارتفاعات و فعالیت های آتش فشانی در بخش میانی و غربی البرز، از نتایج مهم این بخش محسوب می شود. مهم ترین دستاوردهای پژوهش حاضر را می توان به شرح زیر عنوان نمود:

- تأیید زیر راندگی پوسته اقیانوسی حوضه جنوبی خزر به زیر البرز مرکزی مطابق با توزیع لرزه خیزی و ساختار سرعتی پوسته بخش شمالی البرز مرکزی؛
- شناسایی و تفکیک آشیانه مagmaی قدیم و جدید آتش فشان دماوند به ترتیب در شمال شرق و جنوب غرب دهانه فعلی این آتش فشان؛
- مشاهده یک زون پر سرعت در اعماق ۱۰ الی ۲۰ کیلومتری در زیر بخش غربی البرز مرکزی که نسبت به ساختار واقع در اعماق مشابه در زیر بخش شرقی این زون، سرعت بیشتری را نشان می دهد، به عنوان لایه لرزه زا در این بخش از البرز مرکزی، که سختی و استحکام لازم (V_p/V_s پائین) جهت تجمع و ذخیره انرژی زیاد ناشی از حرکت همگرایی البرز مرکزی نسبت به حوضه جنوبی کاسپین را برای تولید زمین لرزه ای بزرگ در آینده، دارد؛
- آشیانه magmaی آتش فشان دماوند به عنوان یک زون کم سرعت، در زیر قله دماوند (شرق قله) قرار می گیرد. وجود حجم زیادی از سنگهای با دمای بالا، در حد فاصل دو کوه دماوند و علم کوه، در ژرفای ۲۰ الی ۴۰ کیلومتری، می تواند به عنوان یک چشمی بالقوه تأمین کننده مواد آشیانه magmaی در البرز بوده باشد.

- Detection of Damvand volcano old and young magma chambers located in northeast and southwest of the Damavand volcano crater;
- Observation of a high velocity zone beneath the western part of the Central Alborz which as a seismogenic layer is enough solid and competent to preserve accumulated seismic energy due to Arabian – Eurasian plates convergence, and therefore capable of causing strong earthquakes in future;
- The Damavand volcano magma chamber is located beneath the volcano crest as a low velocity zone, between two Damavand and Alamkuh mountains, at a depth of ~20 to 40 km as a potential source of magma in the Alborz Mountain.

واژه‌های کلیدی: لرزه‌خیزی، لرزه‌زمین‌ساخت، سازوکار کانونی،
بهینه‌سازی ازدحام ذرات، مدل سرعتی یک‌بعدی و سه‌بعدی، توموگرافی
زمین‌لرزه‌های محلی، البرز مرکزی