

Accuracy Analysis of Seismic Arrays in Seismic Source Location

Mohammad Tatar

Professor, Seismology Research Center
mtatar@iiees.ac.ir

Mahdi Maheri Peyro, Anooshirvan Ansari

Iranian plateau, locating in a one of the most seismically active region in the world, has been affected by strong earthquakes during the past. Historical as well as instrumental earthquakes of recent and past century indicate on many destructive great earthquakes with large fatalities and damages. Therefore, studying the seismicity and seismic structure beneath Iran is important for better assessment of seismic hazard and for improving the construction codes.

Among different parameters, the most important one for earthquake announcement, in seismic hazard analysis, and for detecting seismic sources like active faults is earthquake location. Seismic catalogues including precise information about location of earthquakes have great contribution in this kind of study. This information regarding the location of an occurred earthquake is provided by local, national or regional seismic networks. However, due to poor coverage of seismic stations, the accuracy of location is not good for all recorded event. There is not enough control on location of earthquakes located outside of the seismic network, or those are placed close to country border line. Seismic arrays are strong tool for locating this kind of events, while having less stations comparing to local or national seismic networks.

A seismic array is a set of seismometers installed in a specific geometric pattern (e.g., circle, rectangular, cross, etc). In 1958, array techniques were adopted from radio astronomy to improve the signal-to-noise ratio (SNR) of seismic onsets. Since 1960, seismic array processing is known as a powerful method to detect explosions and discriminate them from natural earthquakes. A seismic array mainly differs from a seismic network by the techniques used for data analysis. However, the recorded signal across an array is highly coherent which is mainly due to the specific geometry of the given array. Hence, it is possible to improve the signal-to-noise ratio of a seismic signal by summing the coherent part of seismic signals recorded at different stations. This process which uses delay and stack of signals is so-called “beamforming”.

The seismic beam constructed by the array processing method is used to locate earthquakes. Moreover, due to imposed SNR enhancement, it is possible to constrain the depth of teleseismic earthquakes which is a rather difficult task using regular seismic networks. In addition, designing and maintaining an array is much more economical than a regular seismic network considering the number of needed stations.

بررسی نقش و عملکرد آرایه‌های لرزه‌ای در تعیین مکان چشم‌های لرزه‌ای

محمد تاتار

استاد پژوهشکده زلزله‌شناسی
mtatar@iiees.ac.ir

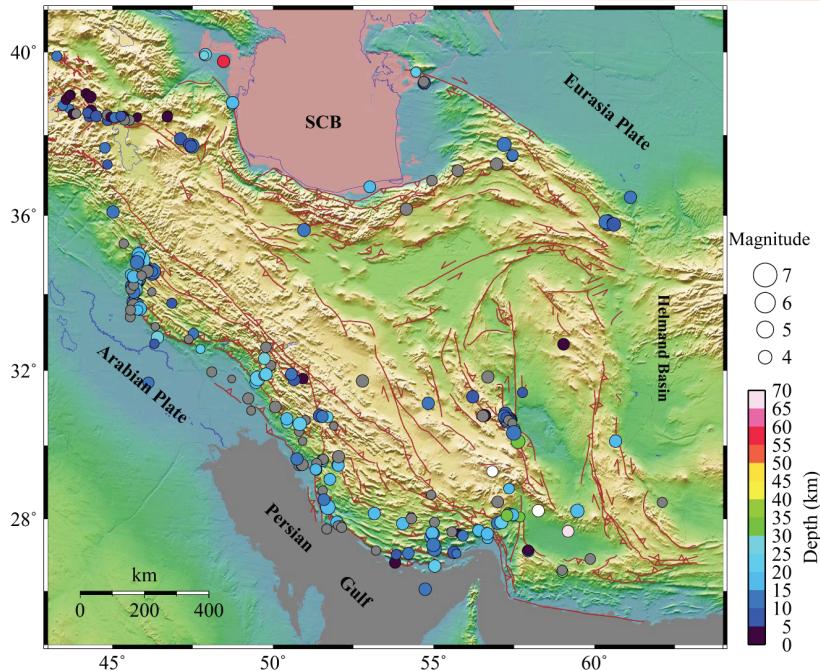
مهدي ماهري‌پيرو، آنوشيروان انصاری

به لحاظ لرزه‌زمين‌ساختی، ايران در يك منطقه فعال لرزه‌خیز واقع شده است که در طول تاریخ شاهد وقوع زمین‌لرزه‌های بزرگ و ویرانگری بوده است. بررسی لرزه‌خیزی صد سال اخیر نیز مؤید رخداد زمین‌لرزه‌های بزرگ و مخرب در بخش‌های مختلف کشورمان است که بعضاً با خسارات مالی و جانی سنگینی همراه بوده‌اند. بنابراین مطالعه ساختارهای زمین‌شناسی و لرزه‌زا به منظور پیشگیری از خطرات احتمالی زمین‌لرزه و افزایش ایمنی سازه‌ها از اهمیت ویژه‌ای برخوردار است.

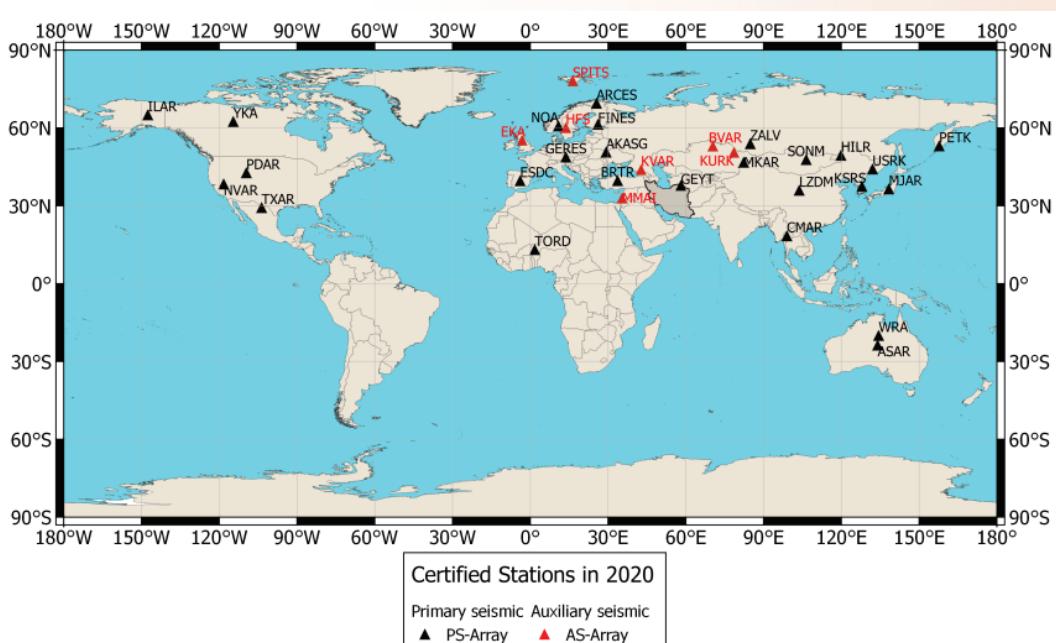
يکی از مهم‌ترین پارامترها در مطالعات زلزله‌شناسی، اعلام زمین‌لرزه‌ها، و شناسایی چشم‌های لرزه‌ای مرتبط با فعالیت گسل‌ها، اطلاعات مکانیابی زمین‌لرزه‌هاست. داشتن يك کاتالوگ دقیق از مختصات زمانی - مکانی زلزله‌های منطقه اهمیت شایانی در مطالعات تحلیل خطر زمین‌لرزه برای آن منطقه دارد. این داده عموماً توسط شبکه‌های لرزه‌نگاری ملی ایران تهیه می‌شود. با این حال، به دلیل کمبود ایستگاه‌های لرزه‌نگاری و ضعف پوشش ایستگاهی در این شبکه‌ها، همواره دقت و کیفیت مکان‌یابی برای تمام زلزله‌های ایران مطلوب نیست. مخصوصاً اگر زلزله‌ها در مناطق مرزی و یا درون دریا رخ بدند. از دده ۶۰ میلادی علاوه بر داده شبکه‌های مرسوم لرزه‌نگاری، آرایه‌های لرزه‌ای به عنوان يك ابزار قدرتمند در تشخیص و مکان‌یابی زلزله‌ها مورد استفاده قرار گرفت. مزیت قابل توجه آرایه‌های لرزه‌ای تعداد بسیار کمتر ایستگاه‌های مورد نیاز و همچنین کاهش هزینه نصب و نگهداری از آنهاست.

تکنیک آرایه لرزه‌ای تقریباً مشابه با همان چیزی است که در مبحث رادیو اخترشناسی از آن استفاده می‌شود. اخترشناسان با بکارگیری مجموعه‌ای از تلسکوپ‌ها به افزایش کیفیت تصاویر دریافتی از کهکشان می‌پردازند. يکی از مزایای استفاده از آرایه لرزه‌ای در مقایسه با يك تک ایستگاه لرزه‌نگاری، بهبود کیفیت نسبت سیگنال به نویه، به دلیل برهم انبارش همدوست امواج رسیده به آرایه است. افزایش دامنه سیگنال نهایی موجب می‌شود تا سیگنال منتشر شده از چشم‌های لرزه‌ای به همراه اطلاعات مسیر انتشار با وضوح بیشتری در دسترس باشد. این اطلاعات عموماً در هنگام استفاده از يك تک ایستگاه لرزه‌نگاری قابل دستیابی نیست و بنابراین استفاده از تکنیک آرایه لرزه‌ای این امکان را فراهم می‌کند تا اطلاعات بیشتری در مورد چشم‌های مسیر انتشار موج بدست آید.

در این مطالعه، میزان افزایش دقت مکان‌یابی زلزله‌های ایران با کمک داده آرایه‌های لرزه‌ای مورد بررسی قرار می‌گیرد. بدین منظور، داده شکل موج ۱۰.۵ زمین‌لرزه با بزرگای ۳.۲ تا ۵.۵ رخداده بین سال‌های ۲۰۱۶ تا ۲۰۱۹ جمع‌آوری شد، شکل (۱). سپس، پردازش داده آرایه‌های لرزه‌ای به روش تشکیل پرتو صورت گرفت و از داده تمام ایستگاه‌های موجود شبکه لرزه‌نگاری باندپهنه ایران به همراه ایستگاه‌های لرزه‌نگاری و آرایه‌ای


In this study, the location accuracy of 105 selected earthquakes, Figure (1) is estimated with magnitude ranging from 3.2 to 5.5, occurred between 2016 and 2019, by adding array data to the waveforms recorded by national networks using array data analysis. First, the accuracy and efficiency of IMS (International Monitoring System) stations and arrays, Figure (2) is investigated for detecting and locating of Iranian earthquakes. Then, the usage and efficiency of a single seismic array in locating teleseismic earthquakes was studied by relocating some well-located events in Iran.

Results of this study show that seismic array data effectively improves the accuracy of earthquake catalogues and also increases the ability to detect seismic sources with more precision across Iran. Based on the data from ISC, we found that their phase picking has been manipulated to wrong phase names which prevented us to consider ISC catalogue as our main criterion. Hence, using ground-truth measured earthquakes is suggested in order to make better compression between the relocation results.


Keywords: Seismic Arrays, Seismic source location, Array data analysis, International Monitoring System

شبکه پایش جهانی، شکل (۲) در مکان‌یابی زلزله‌های انتخابی استفاده شد. در ادامه، مکان‌یابی بدست آمده از این مطالعه با کاتالوگ گزارش شده توسط شبکه لرزه‌نگاری باندپهن ایران، شبکه پایش جهانی (IMS) و مرکز لرزه‌نگاری جهانی (ISC) مقایسه شد. طبق نتایج بدست آمده از این مطالعه، استفاده از داده آرایه‌های لرزه‌ای تأثیر قابل توجهی در افزایش دقت زلزله‌های ایران دارد. همچنین، چندین نکته در خصوص کاتالوگ‌های جهانی مورد توجه قرار گرفت. اول اینکه در کاتالوگ شبکه‌ی IMS عمق بیشتر زلزله‌های ایران برابر با صفر لحاظ شده است که لزوماً درست نیست. در خصوص کاتالوگ مرکز ISC نکته قابل توجهی بدست آمد، این مرکز برای بیشتر زلزله‌های ایران از فازهای لرزه‌ای اشتباه استفاده کرده است که باعث افزایش خطای مکان‌یابی شده است و نیز بازه قابل قبول آنها در انتخاب باقیمانده زمان‌رسید فارها بسیار بیشتر از بازه اعمال شده در این مطالعه و در کاتالوگ شبکه IMS است. با توجه به موارد ذکر شده، بهترین مکان‌یابی برای زلزله‌های ایران از تلفیق داده شبکه لرزه‌نگاری باندپهن ایران با شبکه IMS بدست آمده است.

واژه‌های کلیدی: آرایه لرزه‌نگاری، مکان‌یابی مجدد، پردازش داده آرایه، شبکه پایش جهان

شکل (۱): نقشه رومرکز زلزله‌های انتخاب شده در این مطالعه. این زلزله‌ها بین سال‌ها ۲۰۱۶ تا ۲۰۱۹ رخ داده‌اند و بزرگای محلی آنها بین ۳.۲ و ۵.۵ متغیر است. توزیع عمقی این زلزله‌ها مطابق با نمودار رنگی سمت راست مشخص شده است

شکل (۲): موقعیت آرایه‌های لرزه‌نگاری شبکه IMS. مثلث‌های سیاه و قرمز رنگ به ترتیب موقعیت آرایه‌های اصلی و کمکی را نشان می‌دهند