

Active Fault Map of the Khuzestan, Kohguliyeh & Boierahmad, Charmahal-o Bakhtiary, Bushehr and Fars Provinces

Khaled Hessami Azar

Assistant Professor, Seismology Research Center
hessami@iiees.ac.ir

Plate reconstructions show that deformation within the Zagros fold and thrust belt is due to the relative convergence between Arabia and Asia (Central Iran) since late Early Cretaceous (i.e. Late Aptian). Seismicity maps of the Zagros fold and thrust belt show that medium to large earthquakes occur within a 150-200 km wide zone SW of the Main Zagros Reverse Fault, the fault which marks the NE limit of the Zagros belt. Most focal mechanism solutions of earthquakes in the Zagros region indicate the presence of active reverse faults, with strikes approximately parallel to southeast trend of the regional fold axes. Even though the strikes of nodal planes are not very well constrained, the dips usually require to be steep (40-50°) and therefore rule out the possibility of a single low angle decollement surface that is seismically active. There is no evidence for subcrustal seismicity in the Zagros. The most recently determined focal depths (8-15 km) imply that moderate to large earthquakes occur in the uppermost part of the Arabian basement, beneath the Hormuz Salt Formation. These observations have led many researches to suggest that the Zagros fold and thrust belt is underlain by numerous seismogenic NE-dipping blind reverse faults in the basement which are covered by the folded Phanerozoic sedimentary cover. The hypothesized reverse faults in the basement, however, are considered to be due to inversion of pre-existing listric normal faults, which were initiated as a result of basement extension and thinning during the opening of Neotethys.

Except for a unique example of a co-seismic surface rupture in the Zagros mountains (i.e., the Mw 6.4 1990 November 6 Furg (Hormozgan) earthquake which was associated with ~15 km of south-facing surface ruptures with an average vertical displacement of ~1m), there have been no reports of surface faulting following a Zagros earthquake. This is generally attributed to the evaporate horizons preventing fault propagation from the basement reaching the surface, which deforms by folding instead.

However, since the focal depths of the earthquakes are within the accuracy level of the basement depth, the earthquakes are likely to mark thrust faults in the cover sediments that sole out in either the deep Hormuz and / or the shallow Gachsaran salt layers. A noticeable advance on this issue has been brought by the reappraisal of the seismicity distribution in the SE Zagros. These studies reveal that the main rupture occurred in the competent cover

نقشه گسلهای جنبا استانهای خوزستان، چهارمحال و بختیاری، کهگیلویه و بویراحمد، بوشهر و فارس

خالد حسامی آذر

hessami@iiees.ac.ir

بازسازی موقعیت صفحات تکتونیکی بیانگر آن است که لرزه‌خیزی و فعالیت‌های نو زمین‌ساختی در زاگرس نتیجه حرکت رو به شمال صفحه عربستان نسبت به اوراسیا با یک آهنگ نسبتاً سریع (حدود ۲۲ میلی‌متر در سال) است. روند ساختاری شمال باخترا-جنوب خاور در کمریند چین خورده-رانده زاگرس نتیجه حرکات کوهزائی اصلی در زمان کرتاسه پایانی و می‌وسن-پلیوسن است. براساس دو فاز کوهزائی مزبور، محققین کمریند زاگرس را به دو پهنه زاگرس مرتفع و زاگرس چین خورده تقسیم نموده اند. این روند کوهزائی آلپی، الگوهای ساختاری مربوط به تغییرشکل‌های قدیمی‌تر (پان افريکن) با راستای شمالی-جنوبی را در زیر خود مدفون نموده است.

واکنش پوسته زمین در منطقه زاگرس نسبت به حرکت عمومی رو به شمال صفحه عربستان در اعمق مختلف پوسته متفاوت است. عدم وقوع زمین‌لرزه‌های متوسط و بزرگ در اعمق بیش از ۲۰ کیلومتر نشانگر آن است که پوسته زیرین تا حد زیادی حالت خمیری داشته و تغییرشکل ناشی از فشردگی پوسته در این بخش‌های خمیری به صورت خوش مستهلك می‌گردد. حل مکانیسم کانونی زمین‌لرزه‌های متوسط تا بزرگ نشانگر آن است که لرزه‌خیزی در زاگرس در نتیجه فعالیت تعداد زیادی گسل معکوس کم و بیش موازی که در یک پهنهای ۱۵۰ تا ۲۰۰ کیلومتری گسترش دارند، ایجاد می‌شوند. همچنین تمرکز زمین‌لرزه‌های بزرگ زاگرس در اعمق ۸ تا ۱۵ کیلومتر، بر این موضوع دلالت دارد که تغییرشکل شکننده در امتداد گسلهای معکوس تنها به بخش‌های فوکانی پی‌سنگ (پوسته فوکانی) محدود می‌شود. مقایسه سرعت‌های اندازه‌گیری شده با استفاده از GPS و ممان لرزه‌ای آزاد شده در طی زمین‌لرزه‌های بزرگ و متوسط در زاگرس بیانگر آن است که حداکثر ۱۰ درصد از میزان همگرایی صفحه عربستان به صفحه ایران مرکزی در امتداد زاگرس به صورت انرژی لرزه‌ای آزاد می‌گردد، در صورتی که بخش اعظم آن با حرکات کند و بطئی همراه بوده و به صورت خوش اتفاق می‌افتد.

به طور کلی، با استفاده از ژرفای دقیق کانون زمین‌لرزه‌ها می‌توان به ساختار پوسته و الگوهای کلی لرزه‌زمین‌ساختی منطقه پی‌برد. برای مثال، با حرکت از جنوب باخترا به سمت شمال خاور، نشانی از افزایش عمق زمین‌لرزه‌ها در زاگرس مشاهده نمی‌شود. افزایش عمق کانونی زمین‌لرزه‌ها به سمت شمال خاور می‌توانست به این معنی باشد که عربستان به زیر ایران رانده می‌شود. اگرچه فرورانش صفحه عربستان به زیر ایران در طول حاشیه شمالی خلیج فارس قبل مطرح گردیده بود ولی محاسبه دقیق عمق کانونی و حل مکانیسم زمین‌لرزه‌های زاگرس این فرضیه را باطل نمود. واکنش زاگرس به فشردگی پوسته ناشی از همگرایی صفحات عربستان و ایران به هر دو شکل قشری و عمقی صورت گرفته است. به عبارت دیگر، بخشی از کوتاه‌شدگی و تغییر شکل پوشش رسوبی به دلیل لایه جداگانده سازند

with reverse slip restricted between about 4 and 10 km but failed to propagate down across the Hormuz salt, producing a cluster of aftershocks in the crystalline basement (10–30 km). A more regional reappraisal suggests that the basement is less seismically active and may deform by aseismic creep. With respect to the cover, shortening in the basement is accommodated, at least partly, by distributed thrusts as suggested by fault plane solutions. This localized, active deformation in the upper brittle crust may root at depth into mostly aseismic ductile shear zones at lower crustal levels. Previously, it has been suggested that as little as 10% of the total shortening across the Zagros belt is seismic, while most is accommodated aseismically by folding and stable creep on both thrust and strike slip faults.

In the Zagros, fold and thrust belt seismogenic thrust faults are mostly concealed and ultimately expressed as folding at the surface, and hence are not easily recognizable. On the other hand, the large thickness of evaporates in the lower Cambrian, Jurassic and Tertiary makes it unlikely that there is a simple correlation between structures in the basement and those observed at the surface. However, early workers noticed that meisoseismal regions of moderate to large magnitude compressional earthquakes in the Zagros are concentrated along particular structural-geomorphological features and topographic fronts at the surface. Thus, using structural-geomorphological features, four major blind thrusts in the Zagros basement have been revealed. These thrusts, which constitute frontal asymmetric anticlines, mark topographic fronts at the surface, and have vertically displaced geologic marker beds for more than six thousand meters. These are: the Mountain Front fault, the High Zagros fault, the Dezful Embayment and the Zagros foredeep fault. These master faults, as evidenced by deformation of the asymmetric anticlines in the hanging wall of the blind reverse faults, are segmented and discontinuous, and are separated by gaps in faulting that have presumably controlled the extent of rupture and the magnitude of earthquakes. Whether the occurrence of several medium to large earthquakes along strike implies continuity of individual basement faults over hundreds of kilometers, is subjective. In fact, it is shown that individual segments of 20–40 km length merge to form topographically continuous structures in excess of 100 km length. The lack of earthquakes larger than about $M_s = 7.0$ with source regions larger than 20–40 km, perhaps make such large-scale continuity of faults doubtful. The geomorphic record, however, suggests that reverse faults in the Zagros are likely to have increased in length until neighboring faults merge together to form longer faults. The merger of individual fault segments, each 20–40 km in length, may have a major effect on the magnitude of maximum credible earthquakes.

There is generally no way of deciding which of the

هرمز، به صورت چین خوردگی و به طور مجزا و مستقل از پی سنگ صورت گرفته است. اینگونه تغییر شکل که ناشی از فشارهای تانزانی (موازی سطح) می باشد، سبب گردیده که تغییر شکل های پی سنگ و پوشش رسوبی با یکدیگر منطبق نباشند. در حالی که بخشی از کوتاه شدگی و تغییر شکل پوشش رسوبی در نتیجه کوتاه شدگی پوسته فوقانی و ناشی از وجود گسلش در پی سنگ (عمقی) صورت گرفته است.

بررسی های لرزه زمین ساختی منطقه زاگرس به طور عمده به مطالعات لرزه خیزی این منطقه محدود گردیده است. این موضوع از آنجا ناشی می شود که گسلش لرزه ها در منطقه زاگرس در سطح زمین رخمن ندارد (شاید بتوان به زمین لرزه ۱۹۹۰ فورگ، بندر عباس، به عنوان تنها موردی که با گسلش سطحی همراه بوده اشاره نمود). اساساً در گذشته تصور بر این بوده که تغییر شکل الاستیک در امتداد زون های گسلی اصلی در منطقه زاگرس به فوقانی ترین بخش پی سنگ (ارتفاعی ۸ تا ۱۲ کیلومتر) محدود گردیده و به دلیل وجود لایه های تبخیری که در افق های مختلف پوشش رسوبی وجود دارد، شکستگی به سطح زمین نمی رسد. با این وصف، بازنگری در عمق کانونی زمین لرزه های زاگرس توجه محققین را به این موضوع جلب کرده که پوشش رسوبی می تواند کانون تعدادی از زمین لرزه های اخیر بوده باشد. به دلیل محدودیت مذکور، در بررسی های لرزه زمین ساختی منطقه زاگرس از مدت ها پیش مطالعه عوارض ریخت شناختی در پیوند با تمرکز سطحی زمین لرزه های منطقه مورد توجه پژوهشگران قرار گرفته است. نتیجه این بررسی ها به شناسایی تعدادی از عوارض ریخت زمین ساختی لرزه ها منجر گردید. در این میان، گسل جبهه کوهستان (MFF)، گسل زاگرس مرتفع (HZF)، گسل پیشگویان زاگرس (MFF)، و گسل معکوس اصلی زاگرس (MZRF) به عنوان گسلهای اصلی پی سنگی در زاگرس معروفی و شناسایی شده اند.

تمركز زمین لرزه های متوسط و بزرگ بر روی گسل جبهه کوهستان (MFF) و همچنین بالاترین نرخ کوتاه شدگی بدست آمده از اندازه گیریهای GPS در طول آن نشانگر آن است که امروزه این گسل نسبت به سایر گسلهای معکوس زاگرس از بیشترین فعالیت لرزه خیزی در شمال باختری زاگرس برخوردار است. اگرچه زمین لرزه های متوسط و بزرگ در جنوب خاور گسل کازرون به طور عمده بر روی خط توپوگرافی ۲۱۰۰ متر متتمرکز گردیده، با این وجود رویداد چندین زمین لرزه در پیوند با گسل جبهه کوهستان بر فعالیت لرزه های این ساختار دلالت دارد. اگرچه گسل لبه کوهستان (MFF) یک گسل پی سنگی می باشد، با این وصف، در جنوب خاور زاگرس از نرخ پائین لغش برخوردار بوده و سرچشمه اصلی لرزه خیزی به حساب نمی آید (برخلاف شمال باختر). به عبارت دیگر، اگرچه گسل MFF در باختر گسل کازرون محل تمرکز زمین لرزه های زاگرس است با این وجود، در جنوب خاور زلزله های معده دی در طول این بخش از MFF روی می دهد. با این وجود قطعات مختلف گسل پیشگویان زاگرس (ZFF) نیز در این ناحیه از فعالیت لرزه های نسبتاً بالایی برخوردار می باشند. سرعت های بدست آمده از GPS و رویداد چندین زمین لرزه بزرگ در طول زون گسلی قیز- لار بر فعالیت این سیستم گسلی به عنوان پهنه اصلی لرزه ها در جنوب خاور زاگرس دلالت دارد. حل مکانیسم کانونی زمین لرزه های متوسط تا بزرگ نشانگر آن است که لرزه خیزی در باختر گسل کازرون عموماً نتیجه

nodal planes in the earthquakes focal mechanism solutions is actually the fault plane. This uncertainty in the dip direction of the fault planes, together with the presence of thick evaporates, prevents a reliable association of the hypothesized NE-dipping basement faults with the obvious asymmetry of the Zagros anticlines, most of which have steeper flanks on the southwest. For example, the aftershock distribution of the 2013.04.09 Khaki earthquake lies on the SW side of the MFF. Moreover, depth distribution of the aftershocks shows a southwestward dip direction inconsistent with the supposed northeast dip direction of the MFF. This inconsistency suggests that either this segment of the MFF is dipping southwest, or reactivation of the back-thrust lying along the NE limb of the Shir anticline has been responsible for occurrence of the aftershocks. The same scenario can be inferred when interpreting distribution of the microseismicity across the Mand anticline. Therefore, depth distribution of the seismic events can be interpreted to indicate the ENE-dipping forelimb thrust or WSW-trending back-thrust.

The N–S convergence between Arabia and Asia in the NW Zagros is currently partitioning into a NW–SE orogen-parallel right lateral strike slip faulting along the Main Recent Fault (MRF), and NE–SW orogen-normal shortening across the folds/thrusts. The displacement accommodated along the MRF is currently being transferred in the central Zagros along N–S trending right lateral transverse faults (i.e., Kazerun, Karebas, Sabz-Pushan, Sarvestan). These faults are partitioning longitudinally the oblique and frontal convergence between the northwest and central Zagros, respectively. These transverse basement faults are known to be the surface manifestations of old Pan-African structures which have been developed during the latest Proterozoic and early Cambrian in the Arabian basement. Focal mechanism solutions of the earthquakes along the transverse faults within the Zagros region are interpreted as steeply-dipping strike slip faults with minor components of dip-slip movement. Most of these solutions are consistent with right lateral movement on nodal planes parallel to NNW-trending faults.

Keywords: Active fault, Seismicity, Morphology, Khuzestan, Kohguliye & Boierahmad, Charmahal-o Bakhtiary, Fars

فعالیت قطعات مختلف گسل جبهه کوهستان (MFF) می‌باشد. اگرچه گسل زاگرس مرتفع (HZF) را می‌توان به عنوان یک گسل پی‌سنگی و جنبا در زاگرس در نظر گرفت ولی عدم وقوع زمین‌لرزه‌های تاریخی و دستگاهی و نرخ حرکت پائین استنباط شده از اندازه‌گیریهای GPS بر فعالیت لرزه‌خیزی نسبتاً پایین این پهنه گسلی دلالت دارد. بخشی از همگرایی شمالی-جنوبی صفحات عربستان و اوراسیا در ناحیه زاگرس مرکزی در طول گسلهای راست‌الغز شمالی-جنوبی (نظیر گسلهای کازرون، کره بس و سبزپوشان) مستهلك می‌گردد. پراکندگی گسلهای امتدادلغز در پی‌سنگ زاگرس از نظم خاصی برخوردار است. این گسلها با روند شمال-شمال باخته در زاگرس مرکزی، به همراه گسل کازرون یک الگوی گسل بادزنی شکل را در مقیاس کوهزائی در انتهای جنوبی MRF تشکیل می‌دهند. گسلهای امتدادلغز شمالی-جنوبی شبکه‌ای از گسلهای امتدادلغز راست‌الغز را تشکیل می‌دهند که انتهای جنوبی آنها به گسلهای تراستی موازی با کوهزائی ختم می‌گرددند. به این ترتیب گسل کازرون و دیگر گسلهای امتدادلغز شمالی-جنوبی مجاور آن موجب می‌شوند که حرکت امتدادلغز راست گرد بر روی "گسل اصلی جوان" از طریق این گسلها به کوتاه‌شدنگی بخش‌های درونی کمربند زاگرس بینجامد.

واژه‌های کلیدی: گسل جنبا، لرزه‌خیزی، ریخت‌شناسی، خوزستان، چهارمحال و بختیاری، کهگیلویه و بویراحمد، فارس