

An Investigation on the Seismic Foundation Input Motion to 3D Foundations Including Incomplete Contact of Side-Walls With the Surroundings

Hossein Jahankhah

Associate Professor, Geotechnical Engineering Research Center
h.jahankhah@iiees.ac.ir

Masoud Taheri

By entering the age of faster CPUs and increasing the ability of these processors to solve physical problems via numerical modeling faster than ever, new dimensions of problems have become clear. Soil-structure interaction is one of those topics to study the behavior of structures, that among all effective issues, can govern the seismic demands. Passing from the assumption of having a rigid base beneath the structure, not only the characteristics of the structure affect the seismic response, but also the foundation impedance function and the stiffness contrast between the soil and the foundation causes a change in the system characteristics and the foundation input motion components which in turn can alter the response significantly. Turning free-field motion to foundation input motion, in the technical literature, is classified as kinematic soil-structure interaction. This research specifically focuses on the effects of kinematic interaction with some levels of incomplete contact between the foundation and the surrounding medium.

This study is written in five sections. In the first section, the effect of variation in the parameters such as the depth of the foundation, the structural slenderness, and the wall contact level of the foundation with the surrounding soil on the frequency content of the foundation input motion components, the maximum acceleration turned by the foundation input motion and the response spectrum affected by this phenomenon are investigated. It is shown that contrary to seismic code suggestions, the kinematic interaction does not always have a decreasing effect on the input motion, and in many cases, including slender structures resting on deep foundations without soil-wall contact, intensifies foundation input motion at high frequencies. In the second section, the effect of incomplete contact for a rectangular foundation in three-dimensional mode accompanied by a comparison to the results of strip foundations is investigated. In the third section, the response of an important power plant unit by considering the soil-foundation incomplete contact is evaluated, and given the field evidence observations, it is concluded that the odd trends reported in the literature for kinematic transfer functions (TFs), which have not been justified to date, may be caused by a partial soil-foundation contact. In this trend-justification, the role of the mass concentration of the structure in a limited area

بورسی تحریک ورودی به پیهای مدفون سه بعدی با احتساب تماس ناکامل دیوارهای جانبی با خاک پیرامونی

حسین جهانخواه

h.jahankhah@iiees.ac.ir

مسعود طاهری

با ورود به عصر پردازنده‌های سریع‌تر رایانه‌ای و توانایی هر چه بیشتر این پردازنده‌ها در حل سریع‌تر مسائل فیزیکی با مدل‌سازی عددی، ابعاد جدیدی از مسائل روشن می‌گردد. اندرکنش خاک-سازه یکی از مباحث مؤثر در بررسی رفتار لرزه‌ای سازه‌ها می‌باشد که با بررسی دقیق‌تر آن می‌توان نیاز لرزه‌ای یک سازه را نزدیک‌تر به آنچه که در واقعیت وجود دارد، تعیین کرد. با گذار از فرض بستر صلب و بوجود آمدن تقابل بین خاک و سازه دیگر، مشخصات سازه به تهایی در پاسخ سازه اثرگذار نبوده بلکه در وهله نخست، تفاوت سختی بین خاک و پی باعث تغییر در محتوای فرکانسی حرکت میدان آزاد زمین و دامنه مؤلفه‌های حرکت ورودی پی می‌شود که در ادبیات فنی این اثرات تحت عنوان اندرکنش کینماتیک یا سختی محور دسته‌بندی می‌شود. همچنین انعطاف‌پذیری بستر باعث تغییر در پریود و میرایی سیستم خاک-سازه و به تبع آن تغییر در رفتار دینامیکی سیستم می‌شود که به این پدیده اندرکنش اینرشال یا جرم محور اطلاق می‌شود. در این تحقیق، به طور مشخص بر اثرات اندرکنش سختی محور با در نظر گرفتن سطح تماس ناکامل پی و محیط پیرامون آن تمرکز شده است.

این پژوهش در پنج محور کلی انجام پذیرفته است که در محور اول به بررسی اثر ناکاملی سطح تماس دیواره پی با خاک اطراف بر مؤلفه‌های حرکت ورودی به پی و مرکز جرم سازه، شتاب بیشینه رکورد ورودی تغییریافته نسبت به حرکت ورودی میدان آزاد و طیف پاسخ متأثر از این پدیده برای پیهای سه‌بعدی با مقطع مربعی پرداخته می‌شود. پارامترهایی از جمله عمق دفن پی، نسبت ابعادی پی، سطح تماس پی و لاغری سازه از جمله پارامترهای مهم در این بررسی بوده و نشان داده خواهد شد که برخلاف تصور موجود، اندرکنش سختی محور همیشه اثربخشی نداشته و در موارد متعدد از جمله حالت پی مدفون با عمق دفن زیاد، وجود سازه لاغر مستقر بر آن و مواجهه با شرایط پی مدفون بدون سطح تماس دیواره‌ها با محیط پیرامونی، باعث افزایش حرکت ورودی پی در فرکانس‌های بالا می‌شود. در دو میان محور، اثر تماس ناکامل برای یک پی طویل مستطیلی در حالت سه بعدی و مقایسه نتایج آن با تحلیل دو بعدی معادل بررسی شده و تفاوت‌های حرکتی ورودی به پی‌ها مربعی، مستطیلی و نواری مورد بحث قرار گرفته است. محور سوم به ارزیابی موردنی پاسخ سازه‌ای خاص و پراهمیت با لحاظ کردن سطح تماس ناکامل اختصاص یافته و نشان داده شده است که تمرکز جرم سازه در یک محدوده مشخص بر روی پی قرار گرفته بر بستر سنگی بواسطه ایجاد تماس ناکامل میان پی و محیط اطراف در جنبش‌های قوی، باعث ایجاد پاسخی فراتر از آنچه که در آینه نامه‌ها پیش‌بینی شده است، می‌گردد و اثر افزایشی چشمگیری بر حرکت ورودی پی دارد. روش تقریبی بررسی اندرکنش سختی محور که مورد استفاده مهندسان می‌باشد، در محور چهارم به بوته نقد گذاشته شده و در نهایت در

on the foundation is introduced as the main probable cause that made the partial soil-foundation contact. The averaging method used by engineers in order to calculate the kinematic interaction is criticized in section four. In the last section, KI transfer functions of body and surface waves for different angles and various embedment ratios are presented.

Keywords: Soil-structure interaction, Kinematic interaction, Free-field motion, Incomplete contact, Transfer function

محور آخر، توابع تبدیل حرکت ورودی برای امواج حجمی و سطحی برای زوایای مختلف تابش و فرض تماس کامل پی با محیط اطراف ارائه گردیده است.

واژه‌های کلیدی: اندرکنش خاک-سازه، اندرکنش سختی محور، حرکت میدان آزاد زمین، سطح تماس ناکامل پی با محیط اطراف، تابع تبدیل