

Analysis of Seismicity in Iran's Catalog of Earthquakes Using the Probabilistic Earthquake Forecasting Model - Kagan and Jackson Method

Mehdi Zare

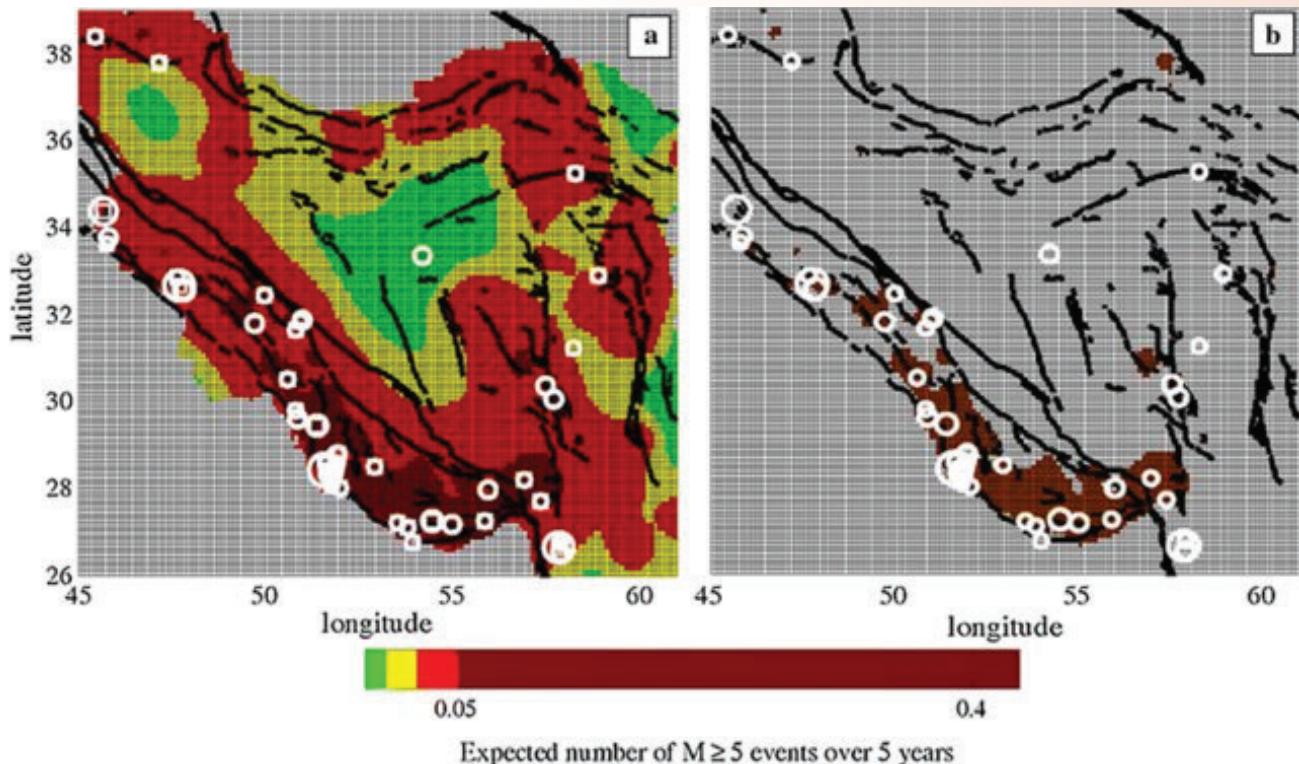
Professor, Seismology Research Center
mzare@iiees.ac.ir

Mohammad Talebi

A long-term forecasting model is proposed to evaluate the probabilities of forthcoming $M \geq 5.0$ earthquakes on a 0.2° grid for an area including the Iranian plateau. The model is built basically from smoothing the locations of preceding events, assuming a spatially heterogeneous and temporally homogeneous Poisson point process for seismicity. In order to calculate the expectations, the space distribution, from adaptively smoothed seismicity, has been scaled in time and magnitude by average number of events over a 5-year forecasting horizon and a tapered magnitude distribution, respectively. The model has been adjusted and applied considering two earthquake datasets: a regional unified catalog (MB14) and a global catalog (ISC). Only the events with $M \geq 4.5$ have been retained from the datasets, based on preliminary completeness data analysis. A set of experiments has been carried out, testing different options in the model application, and the average probability gains for target earthquakes have been estimated. By optimizing the model parameters, which leads to increase of the predictive power of the model, it is shown that a declustered catalog has an advantage over a non-declustered one, and a low-magnitude threshold of a learning catalog can be preferred to a larger one. In order to examine the significance of the model results at 95% confidence level, a set of retrospective tests, namely, the L test, the N test, the R test, and the error diagram test, has been performed considering 13 target time windows. The error diagram test shows that the forecast results, obtained for both the two input catalogs, mostly fall outside the 5% critical region that is related to results from a random guess. The L test and the N test could not reject the model for most of the time intervals (i.e. ~85 and ~62% of times for the ISC and MB14 forecasts, respectively). Furthermore, after backwards extending the time span of the learning catalogs and repeating the L test and N test for the new dataset as well as the R test, it is observed that a low-quality longer catalog does not essentially improve the predictive skill of the model than a high-quality shorter one. The

تحلیل لرزه‌خیزی در کاتالوگ زمین‌لرزه‌های ایران با
بکارگیری مدل پیش‌یابی احتمالی زمین‌لرزه -
روش کاگان و جکسون

مهندی زارع


استاد پژوهشکده زلزله‌شناسی
mzare@iiees.ac.ir

محمد طالبی

یک مدل پیش‌بینی بلندمدت برای ارزیابی احتمال زلزله‌های $M \leq 5.0$ در شبکه ۰،۲ درجه برای منطقه‌ای از جمله فلات ایران پیشنهاد شده است. این مدل اساساً از صاف کردن مکان‌های رویدادهای قبلی، با فرض یک فرآیند نقطه پواسون مکانی ناهمگن و زمانی همگن برای لرزه‌خیزی ساخته شده است. به منظور محاسبه انتظارات، توزیع فضایی، از لرزه‌خیزی تطبیقی هموار، به ترتیب بر اساس تعداد میانگین رویدادها در یک افق پیش‌بینی ۵ ساله و یک توزیع بزرگی مخروطی در زمان و بزرگی مقیاس‌بندی شد. این مدل با در نظر گرفتن دو مجموعه داده زلزله تنظیم و اعمال شده است: یک کاتالوگ یکپارچه منطقه‌ای (MB14) و یک کاتالوگ جهانی (ISC). تنها رویدادهای با $M \leq 4.5$ از مجموعه داده‌ها، بر اساس تجزیه و تحلیل داده‌های کامل بودن اولیه، حفظ شده‌اند. مجموعه‌ای از آزمایش‌ها انجام شده است، گزینه‌های مختلف را در کاربرد مدل آزمایش می‌شود، و میانگین سود احتمالی برای زلزله‌های هدف برآورد شد. با بهینه‌سازی پارامترهای مدل، که منجر به افزایش قدرت پیش‌بینی مدل می‌شود، نشان داده می‌شود که یک کاتالوگ خوش‌بندی شده نسبت به غیر خوش‌بندی برتری دارد و آستانه کم‌قدر یک کاتالوگ یادگیری را می‌توان به یک فهرست ترجیح داد. به منظور بررسی اهمیت نتایج مدل در سطح اطمینان ۹۵ درصد، مجموعه‌ای از آزمون‌های گذشته نگر، یعنی آزمون L، آزمون N، آزمون R و آزمون نمودار خط، با در نظر گرفتن ۱۳ پنجره زمانی هدف انجام شده است. آزمون نمودار خط نشان می‌دهد که نتایج پیش‌بینی، به دست آمده برای هر دو کاتالوگ ورودی، عمدتاً خارج از منطقه بحرانی ۵٪ است که مربوط به نتایج یک حدس تصادفی است. تست L و تست N نمی‌توانند مدل را برای بیشتر بازه‌های زمانی رد کنند (به عنوان مثال، ~۸۵٪ و ~۶۲٪ موارد برای پیش‌بینی‌های ISC و MB14، به ترتیب). علاوه بر این، پس از افزایش بازه زمانی کاتالوگ‌های یادگیری و همچنین آزمون L و آزمون N برای مجموعه داده جدید و همچنین آزمون R، مشاهده می‌شود که یک کاتالوگ طولانی‌تر با کیفیت پایین اساساً مهارت پیش‌بینی را بهبود نمی‌بخشد. مدل نسبت به مدل کوتاه‌تر با کیفیت بالا آزمون‌های گذشته‌نگر انجام شده نشان می‌دهد که مدل حداقل با توجه به مدل مرجع یکنواخت فضایی، کارایی قابل قبولی از نظر آماری برای منطقه مورد مطالعه دارد. بنابراین، مدل در نظر گرفته شده ممکن است اطلاعات مغایدی را به عنوان مرجعی برای مدل‌های مستقل از زمان دقیق‌تر و همچنین در ترکیب با نشانه‌های بلندمدت از نقشه‌های خطر لرزه‌های فراهم کند. این امر به ویژه در مناطقی که با سطح بالایی از لرزش زمین پیش‌بینی شده و نرخ پیش‌بینی بالا مشخص می‌شوند، مرتبط است.

performed retrospective tests suggest that the model yields some statistically acceptable efficiency for the studied area, at least with respect to the spatially uniform reference model. Thus, the considered model may provide useful information as a reference for more refined time-independent models and also in combination with long-term indications from seismic hazard maps; this is particularly relevant in areas characterized by a high level of predicted ground shaking and high forecast rate.

Keywords: Seismicity, Earthquake prediction, Kagan and Jackson, Probabilistic seismic hazard analysis

(a) نرخ لرزه‌خیزی مورد انتظار زمین‌لرزه‌های $M \leq 5$ در یک افق پیش‌بینی ۵ ساله از سال ۲۰۱۳ تا ۲۰۱۷، که با سلول‌های 0.1×0.1 درجه گستته شده است. بر اساس چندک‌ها 0.05 , 0.26 , 0.4 و 0.9 از مقدار نرخ به مناطق خطر لرزه کم / متوسط، زیاد و خیلی زیاد طبقه‌بندی شده است.

(b) همان نقشه، فقط سلول‌هایی با خطر بسیار بالا (عنی بالای صدک 90) را نشان می‌دهد. نمادهای سفید ISC را رویدادهای خوشای هستند که از ۱ ژانویه ۲۰۱۶ تا ۲۰۱۳ رخ داده‌اند، همان‌طور که در کاتالوگ گزارش شده است و خطوط ثابت خطاهای اصلی منطقه را نشان می‌دهند