

Numerical Evaluation of Foundation Uplift Effects on Seismic Demands of Structures Having Rigid Foundation on Rigid Base Under Nearfield Records

Hossein Jahankhah

Associate Professor, Geotechnical Engineering Research Center
h.jahankhah@iiees.ac.ir

Mostafa Okhovat

The observations from severe earthquakes show that seismic loads can induce damage in the soil underlying the foundation, in addition to structural and nonstructural damages. These may contain the settlement, foundation uplifting, or pile failure, as a result of the lack of soil-bearing capacity, liquefaction, or so on.

As the earthquake occurs, the foundation may experience each or a combination of vertical and horizontal translations as well as rotational motions, depending on the flexibility of soil underneath the footing and the geotechnical conditions of the site.

Based on which of these motions is dominant, the seismic forces transmitted to the superstructure would be affected. It is because the structural vibration is coupled with the foundation motions. Among these, the rocking motion is more important regarding the change of vibrational characteristics of the system and the interaction between the rocking motion and the overturning moment due to seismic responses.

In rocking motion, if the foundation stiffness is significantly greater than that of the underlying soil as well as other structural elements, the foundation tends to rotate about one of the edges or pivots. When the foundation rocks, either the soil yielding or foundation uplifting, depending on the static vertical safety factor of the foundation or a combination of them, may dominate the behavior. In the technical literature, these two phenomena are categorized under the title of "rocking isolation". In this way, there are several challenging issues in the current literature and the regulations of the seismic design codes: a) The general belief among the researchers is that the foundation uplift has beneficial effects on seismic demands. This means that the structural responses can be reduced due to the foundation uplift; b) The fixed-base assumption is one of the most important assumptions in the seismic design codes. Although some requirements, related to the soil-foundation-structure interaction, have been provided to modify the base shear and story drift, they generally mitigate the

بررسی عددی تأثیرات برکنش پی بر نیازهای لرزه‌ای سازه‌های دارای پی‌های صلب بر روی بستر صلب در زلزله حوزه نزدیک

حسین جهانخواه

h.jahankhah@iiees.ac.ir دانشیار پژوهشکده مهندسی زئوتکنیک

مصطفی اخوت

در هنگام وقوع زلزله، بسته به میزان انعطاف‌پذیری بستر زیر پی و شرایط زئوتکنیکی محل، پی سازه می‌تواند هریک از سه حرکت انتقالی قائم، انتقالی افقی همراه با لغزش یا دورانی گهواره‌ای همراه با برکنش (که از این پس حرکت گهواره‌ای نامیده می‌شود) را تجربه نماید. بسته به اینکه کدام یک از این سه حرکت در تراز پی حاکم می‌باشند، نیازهای لرزه‌ای می‌توانند تحت تأثیر قرار گیرند. به بیان دیگر، مودهای حرکتی در تراز پی و نوسات سازه به صورت همبسته می‌باشند. در این میان، مود حرکت گهواره‌ای، با توجه به اندرکنش مستقیم با لنگر واژگونی و همچنین تغییر مشخصات ارتعاشی سیستم در هنگام حرکت گهواره‌ای، دارای اهمیت دوچندان در اندرکنش خاک-پی-سازه می‌باشد. در حرکت گهواره‌ای، با فرض سختی بسیار زیاد پی در مقایسه با سختی بستر و سایر اعضا سازه‌ای، پی سازه متمایل به دوران حول یکی از لبه‌ها (پاشنه) می‌باشد. در هنگام دوران پی بسته به ضربی اطمینان ظرفیت باربری قائم شالوده، تسلیم محدود و متمرکز بستر در محل پاشنه و برکنش پی می‌تواند رخ دهد که در ادبیات فنی از این دو پدیده تعبیر به جداسازی گهواره‌ای می‌شود. در این راستا، در پژوهش‌های انجام شده و الزامات آیین نامه‌های طراحی لرزه‌ای، چند مسأله قابل تأمل وجود دارد: (الف) تفکر غالب پژوهشگران بر سودمندی بدن برکنش پی در تقلیل نیازهای لرزه‌ای سازه‌های ارتجاعی و غیرارتجاعی می‌باشد؛ (ب) یکی از فرضیات بسیار مهم در آیین نامه‌های طراحی لرزه‌ای، گیرداری پای سازه می‌باشد. هرچند، برای لحاظ نمودن اثرات اندرکنش خاک و سازه روابطی برای اصلاح برش و تغییر مکان جانبی سازه ارائه گردیده است، لیکن این روابط در جهت کمک کردن برش پایه و با فرض عدم برکنش پی می‌باشد؛ (ج) در بیشتر تحقیقات گذشته، پاسخ‌های لرزه‌ای شامل دوران بیشینه پی و بررسی احتمال واژگونی سازه بوده‌اند و کمتر به سایر پاسخ‌ها از قبیل جابه جایی نسبی طبقات توجه شده است؛ (د) پژوهش‌های انجام شده بیشتر به تأثیرات مشخصات سازه شامل پریود سازه و لاغری سازه به علاوه مشخصات شتابنگاشت اعمالی محدود شده‌اند و پارامترهای بدون بعد تأثیرگذار مانند میرایی، نسبت پریود موجک به پریود سازه یا نسبت فرکانس سازه به پارامتر اندازه، به ندرت مورد ارزیابی قرار گرفته‌اند. با توجه به این نکات، هدف از پژوهش حاضر، بررسی جنبه‌های تشیدکننده نیازهای لرزه‌ای ناشی از برکنش پی و تفکیک آن از اثرات سودمند با ایجاد یک مرزبندی مشخص می‌باشد. این امر با بکارگیری و توسعه معادلات دیفرانسیل حرکت سازه‌های ارتجاعی و غیرارتجاعی با قابلیت برکنش پی از بستر سخت انجام می‌پذیرد. شتابنگاشت‌های اعمالی به مدل‌ها شامل موجک‌های رایکر متقاضان و نامتقاضان به علاوه شتابنگاشت‌های حوزه نزدیک دارای موجک می‌باشند. سازه‌های یک درجه آزاد ارتجاعی و غیرارتجاعی به همراه سازه‌های چند درجه آزاد

earthquake-induced demands. In those requirements, the foundation uplift is not taken into account; c) In the majority of previous investigations, just the maximum base rotation and the overturning possibility were investigated, while less attention has been paid to other response parameters, such as the story drifts; d) In most studies, the varied parameters have been often limited to the structural specifications, such as slenderness or the fundamental vibrational frequency, along with the ground motion characteristics, including the peak ground acceleration and prevailing frequency, and their effects on the seismic demands. Thus, the dimensionless parameters, such as the structural damping, the structural frequency normalized by the prevailing frequency of ground shaking or the ratio of the structural frequency to the prevailing frequency parameter, have been rarely examined.

Accordingly, the aim of this project is the assessment of amplifying aspects of foundation uplift on the seismic demands and developing meaningful frequency-acceleration thresholds to describe such amplifications. For this purpose, the differential equations of motion of linear and nonlinear structures rocking on a rigid base are developed and applied. The models are excited by symmetric and asymmetric ricker pulses as well as a set of near-source ground shakings. In this project, the elastic and inelastic SDOF structures, as well as the elastic and inelastic shear MDOF buildings are investigated.

The results show that, despite the case of fixed-base structures, as the fundamental structural frequency increases concerning the prevailing pulse frequency, seismic demands are amplified in the uplifted structures. Focusing on the damping effects, though the seismic responses are reduced for systems with low damping ratios, they enlarge for high damping in the case of rocking SDOF structures. In multi-degree shear structures, it is observed that the story drifts of uplifted cases grow with respect to SDOF systems. This phenomenon is more considerable for squat structures comparing corresponding slender models. In nonlinear structures, the foundation uplift results in the amplification of the deformation in the system comparing the corresponding fixed base one as the ratio of natural frequency to the predominant frequency of excitation increases.

Keywords: Foundation uplift, SDOF system, MDOF system, Bouc-Wen hysteresis model, Structural damping

برشی ارجاعی و غیرارتجاعی در این مطالعه مورد کنکاش قرار گرفته‌اند. نتایج نشان می‌دهند که در کلیه تحلیل‌ها، با فرض ثابت بودن دامنه بیشینه بدون بعد شتابنگاشت و نیز لاغری و میرایی سازه، پاسخ سازه صرفاً وابسته به نسبت فرکانس طبیعی سازه به فرکانس غالب شتابنگاشت بوده و به طور مستقل به فرکانس طبیعی سازه یا فرکانس غالب شتابنگاشت ارتباط پیدا نمی‌کند. بیشترین جایه‌جایی نسبی در سازه با قابلیت برکنش پی نسبت به سازه گیردار در نزدیکی زوج شتاب - فرکانس‌های منجر به واژگونی مشاهده می‌شود، به طوری که جایه‌جایی نسبی بی‌بعد شده در سازه با قابلیت برکنش نسبت به سازه با پای گیردار در برخی موارد از مقدار ۲ فراتر می‌رود. در سازه چند درجه آزاد ارجاعی، برای هر یک از انواع تحریکات، نیازهای لرزه‌ای بدون بعد در طبقات بالا به میزان چشمگیری در مقایسه با طبقات پایین افزایش می‌یابد. در تحریکات با فرکانس غالب پایین و در سازه یک درجه آزاد غیرارتجاعی، چاق ترشدن سیستم و افزایش سختی سازه منجر به افزایش نسبت جایه‌جایی سازه مستعد برکنش پی نسبت به حالت سازه با پای گیردار می‌شود. این افزایش به گونه‌ای است که در برخی موارد تحت تحریک یکسان، علیرغم رفتار ارجاعی سازه گیردار، سازه مستعد برکنش پی وارد ناحیه غیرارتجاعی شده و شکل پذیریهای تا ۲ را نیز متحمل می‌شود. در سازه یک درجه آزاد غیرارتجاعی، در مواردی که تغییر مکان تسلیم از تغییر مکان آستانه برکنش پی کمتر می‌باشد، حتی پس از ورود سازه به محدوده غیرخطی و برخلاف انتظار اولیه، در مواردی پی سازه برکنش را تجربه می‌نماید. هرچند در این موارد، تمایل پی به برکنش زیاد نیست.

واژه‌های کلیدی: برکنش پی، نیازهای لرزه‌ای، سازه‌های ارجاعی و غیرارتجاعی، شتابنگاشت‌های حوزه نزدیک موجکدار، نسبت میرایی سازه‌ای