

Numerical Investigation on Pattern of Stress/Pore Water Pressure Variation inside Impervious Core of Embankment Dams during Earthquakes and Its Consequences on Dam Stability

Javad Jalili

Assistant Professor, Geotechnical Engineering Research Center

j.jalili@iiees.ac.ir

Seyed Ehsanaldin Hosseini, Arasm Soroushian
Mohammad Davoodi

Evaluation of stress and pore water pressure distribution inside impervious core of embankment dams, especially during a dynamic loading is necessary to analyze the dam stability. To perform such analysis truly, it is also necessary to model soil behavior as precise as possible. As the loading path affects the soil behavior, this study aims to probe loading pattern in different levels of embankment dam core during an earthquake. A comprehensive numerical study on Alborz embankment dam and Polrood embankment dam was conducted in this regard. Figures (1 and 2) show the geometry of the analyzed models

To increase accuracy of the numerical analyses, extensive considerations such as correct modeling of bed rock and lateral boundaries, precise preference of soil behavior model, consideration of the dam reservoir interaction on dynamic analysis results, optimum preference of dynamic time stepping, correction of input motions regarding standard regulations and also the seismic hazard studies of the dam were taken into consideration.

Based on results of the concrete calculations performed, the dynamic loading pattern at different levels of the embankment core was investigated through practical loading parameters such as the deviatoric stress (q) variation with time, the ratio of the mean confining pressure amplitude to that of the deviatoric stress ($h=p/q$) and the ratio of excess pore water pressure to the total confining

A set of equations are proposed to estimate equivalent uniform cycles of shear stress that cause the highest excess pore water pressure at the core of the dam caused by a definite input motion, similar to the excess pore water pressure that would be caused if the dam was numerically analyzed by the input motion. The calculation procedure was:

The maximum shear modulus of the core material, G_0 , was considered as the first trial.

The main frequency of the dam was estimated according to the equation in Das and Luo (2016):

بورسی عددی الگوی تغییرات تنش و فشار آب حفره‌ای در هسته نفوذناپذیر سدهای خاکی در اثر زلزله

جواد جلیلی

استادیار پژوهشکده مهندسی زلزله‌گردانی
j.jalili@iiees.ac.ir

سید احسان الدین حسینی، آرام سروشیان، محمد داوودی

بررسی توزیع تنش و فشار آب حفره‌ای در هسته نفوذناپذیر سدهای خاکی، خصوصاً در بارگذاری دینامیکی ناشی از وقوع زمین‌لرزه، در تحلیل پایداری و قابلیت بهره برداری آنها از اهمیت برخوردار می‌باشد. با توجه اهمیت مسیر بارگذاری در تخمین پارامترهای رفتاری مصالح، جهت مطالعات عددی و آزمایشگاهی مرتبط با تحلیل پایداری سدهای خاکی، آگاهی از الگوی بارگذاری لرزه‌ای این اینه مورد نیاز است. این مطالعه به دنبال بررسی تغییرات تنش در ترازهای مختلف مصالح رسانی هسته سدهای خاکی در حین زلزله بوده است. همچنین در این مطالعه، کنترل پایداری سدهای خاکی ناشی از افزایش اضافه فشار آب حفره‌ای به دلیل استفاده از مصالح مخلوط در هسته این سدها نیز مورد بررسی قرار گرفته است. بدین منظور، مطالعه عددی جامعی بر روی سدهای خاکی البرز و پلرود صورت پذیرفت. شکل‌های (۱) و (۲) هندسه مدل‌های ساخته شده از این دو سد را نشان می‌دهد.

جهت افزایش صحت محاسبات، مدلسازی صحیح موقعیت سنگ بستر و مرزهای جانبی، انتخاب مدل رفتاری مناسب در تحلیل، بررسی اثر مخزن سد بر نتایج تحلیل دینامیکی، انتخاب گام زمانی مناسب رکورد لرزه‌ای، تصحیحات مربوط به نگاشتهای ورودی و روش کاهش هزینه محاسباتی مدنظر قرار گرفتند. پس از ملاحظات فراوان برای مدلسازی هرچه بهتر سدهای خاکی، الگوی بارگذاری لرزه‌ای هسته سد در قالب محدوده‌ای از پارامترهای بارگذاری همچون نسبت تنش تفاضلی (q) (اولیه، نسبت دامنه تغییرات تنابوی فشار همه جانبی متوسط به تنش تفاضلی ($\eta=p/q$))، نسبت فشار آب حفره‌ای اضافی به فشار همه جانبی کل (r_{up}) و ارائه تنش نگاشت در ترازهای مختلف هسته بررسی شد.

در همین راستا، رابطه‌ای نیز پیشنهاد شده است که تعداد سیکل یکنواخت تنش بر شی معادل با بارگذاری لرزه‌ای را برای یک زلزله مشخص بدهست می‌دهد. این بارگذاری یکنواخت معادل، همان فشار آب حفره‌ای بیشینه را در هسته سد ایجاد می‌کند که اگر زلزله مورد نظر به سد اعمال می‌شود، ایجاد می‌گردد. مراحل محاسبه بدین قرار است:

- ۱- مقدار بیشینه سختی هسته سد (G_0) به عنوان اولین سعی برای ساختی مصالح هسته در نظر گرفته می‌شود.
- ۲- فرکانس اصلی سد بر مبنای رابطه ارائه شده توسط داس و لو استفاده می‌شود:

$$\omega_1 = \frac{2.404}{H_c} \sqrt{\frac{G}{\rho}} \quad (1)$$

- ۳- مقدار متناظر فرکانس اصلی سد در طیف پاسخ جابه‌جایی نگاشت مربوطه $S_{d\text{dam}}$ می‌شود:

$$\omega_I = \frac{2.404}{H_c} \sqrt{\frac{G}{\rho}} \quad (1)$$

The displacement response spectrum magnitude at the main frequency of the dam was read from the response spectrum curve of the input motion record, $S_{d\ dam}$

The average shear strain was estimated along the dam core:

$$\gamma_{\text{dam}} = \frac{S_{d\ dam}}{H_c} \quad (2)$$

Based on the calculated g_{dam} , the shear modulus magnitude was corrected if required. The procedure went on until nearly the same shear modulus magnitudes in two subsequent calculations were obtained. The modulus reduction cure of the core material was required in this step. Since such data were not available, the proposed modulus reduction cure by Park and Kishida (2019), which is recommended for the core of the dams made up of clay-aggregate mixtures similar to the dams studied herein, was used.

Then, applying Eqs. (3) through (6), the targeted parameters were estimated.

$$n_{\text{equation}} = \frac{I_A \times S_{v\ dam} \times \rho_c}{4\pi D \times A \times \gamma_{\text{dam}}} \quad (3)$$

$$\gamma_{\text{dam}} = \frac{S_{d\ dam}}{H_c} \quad (4)$$

$$A_{\text{equation}} = 0.65 \times \frac{a_{\text{max}}}{g} \times \sigma_{v\ core\ elevation} \quad (5)$$

$$f_{\text{equation}} = \frac{n_{\text{eq}}}{\text{Duration}_{70\%}} \quad (6)$$

In Eq. (3), I_A is the Arias intensity of the input motion, S_v is the velocity response spectrum magnitude at the main frequency of the dam, ρ_c is the core material density, D is the damping of the core material at g_{dam} which was estimated from the curve proposed by Park and Kishida (2019).

Further, a_{max} is the maximum acceleration of the input motion, which is 0.3g in this study is the total vertical stress at the desired elevation. In this $\sigma_{v\ core\ elevation}$ $s\ t\ u\ d\ y$, was calculated as the product of the core height to its total $\sigma_{v\ core\ elevation}$ unit weight:

$$\sigma_{v\ core\ elevation} = 0.5 \rho_c \times g \times H_c \quad (7)$$

Care must be taken that Eq. (3) results in a unit-less magnitude. Consequently, any set of compatible units may be used.

Putting Eqs. (4), (5) and (6) into Eq. (3), a simpler form

-۴- کرنش برشی متوسط در هسته سد از رابطه (۲) بدست می آید:

$$g_{\text{dam}} = \frac{S_{d\ dam}}{H_c} \quad (2)$$

بر مبنای کرنش بدست آمده مجدداً مقدار سختی از منحنی رفتاری قرائت می شود و پرسه قبلی تا تکرار سختی در دو گام پیاپی با خطای قابل قبول ادامه می یابد. منحنی رفتاری مصالح هسته در این گام مورد نیاز است. در صورت در دسترس نبودن این منحنی، پیشنهاد می شود از منحنی پارک و کیشیدا استفاده شود. این منحنی با انجام آزمایش بر روی مصالح مخلوط هسته تعداد زیادی سد مختلف بدست آمده است.

-۵- پس از آن مقدار سیکل معادل یکنواخت و دامنه و فرکانس آن از روابط زیر بدست می آیند:

$$n_{\text{equation}} = \frac{I_A \times S_{v\ dam} \times \rho_c}{4\pi D \times A \times \gamma_{\text{dam}}} \quad (3)$$

$$\gamma_{\text{dam}} = \frac{S_{d\ dam}}{H_c} \quad (4)$$

$$A_{\text{equation}} = 0.65 \times \frac{a_{\text{max}}}{g} \times \sigma_{v\ core\ elevation} \quad (5)$$

$$f_{\text{equation}} = \frac{n_{\text{eq}}}{\text{Duration}_{70\%}} \quad (6)$$

در این رابطه ها، از پارامترهای جدول (۱) بهره برده شده است. ایده این رابطه از در نظر گرفتن هسته سد همچون المان هایی متوالی چون المان آزمون برش مستقیم در آزمایشگاه گرفته شده است و با تقسیم انرژی وارد شده به واحد حجم هسته سد به انرژی یک سیکل رفتاری مصالح هسته سد، عدد سیکل معادل یکنواخت را تخمین می زند.

جدول (۱): پارامترهای استفاده شده در رابطه ۱ تا ۶

پارامتر	تعریف
I_A	شد آریاس نگاشت ورودی
$S_{v\ dam}$	مقدار طیف سرعت نگاشت ورودی در فرکانس طبیعی سد
ρ_c	چگالی مصالح هسته سد
D	نسبت میرایی مصالح هسته (متباخت با G نهایی شده برای هسته)
a_{max}	بیشینه شتاب نگاشت ورودی
$\sigma_{v\ core\ elevation}$	تنش قائم کل در تراز میانی هسته سد (وزن مخصوص کل هسته ضرب در ارتفاع هسته تقسیم بر ۲)

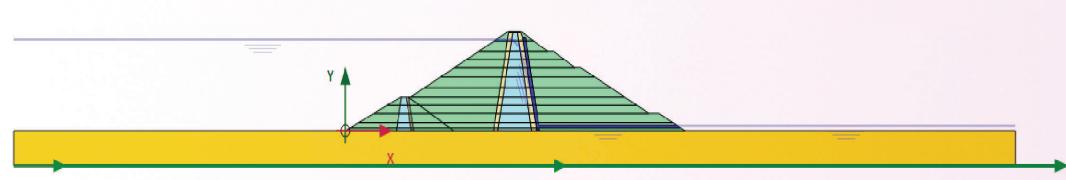
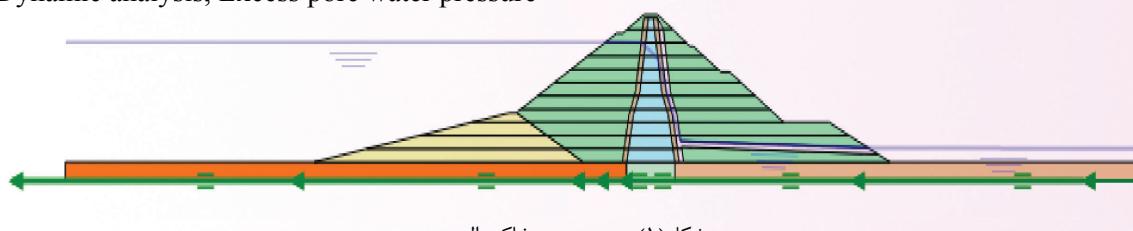
در نهایت، با مطالعه مورده سد پل رود و لحاظ نمودن خصوصیات رفتاری مصالح مخلوط در هسته این سد، اثرات آن بر پایداری کلی سد بررسی شده است. در مصالح مخلوط با افزایش فشار آب حفره ای، ضریب اطمینان پایداری سد کاهش می یابد. میزان این کاهش بستگی به عوامل متعددی از جمله هندسه نسبی هسته و پوسته دارد. در سدهای حاوی

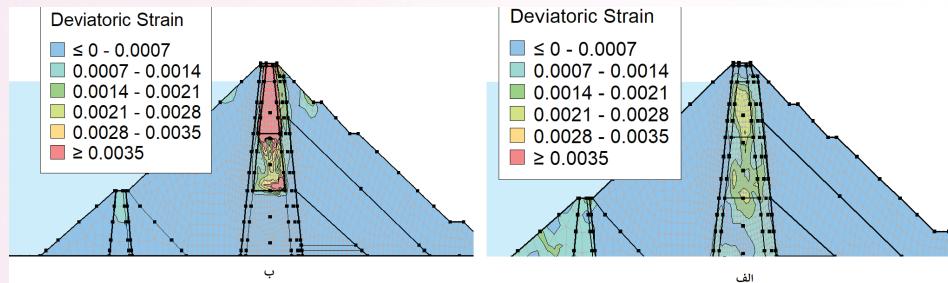
of the Eq. (3) is governed:

$$n_{equation} = \frac{I_A \times S_{v, dam}}{1.3\pi D \times a_{max} \times S_{d, dam}} \quad (8)$$

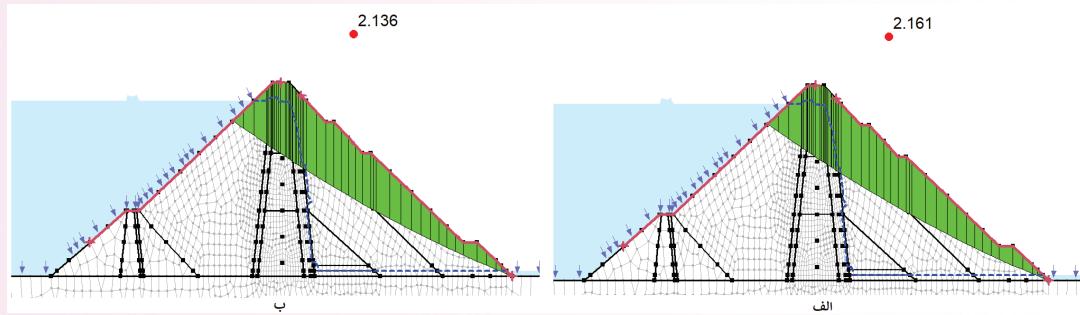
In next step, by studying the case study of the Polrood dam (which contains mixed materials in the core), the effects of mixed material behavior on overall stability of the dam have been investigated.

In mixed materials, with increasing pore water pressure, the dam stability safety factor decreases. The extent of this decrease depends on several factors, including the relative geometry of the core and the shells. In dams containing thin cores and high-shear strength shells, the effects of changes in the excess pore water pressure in numerical models do not produce a significant change in the overall safety factor; However, care must be taken to the high shear strains and possible cracking and water penetration in the mixed cores, which may not be modeled in this study.



Figures (3 and 4) compare the status of the dam core in the normal state (uniform core) and the case where the effect of the mixed materials is modeled in the form of weakening of the materials in the upper elevations (zoned core). Despite the significant shear strain in the zoned core, the overall safety factor of the entire dam has not been significantly affected by changes in core conditions.


Keywords: Equivalent uniform stress cycles, Embankment dam core, Dynamic analysis, Excess pore water pressure

هسته نازک و پوسته‌های عریض با مقاومت برشی بالا، اثرات تغییرات فشار آب حفره‌ای هسته در مدل‌های عددی تغییر محسوسی در ضرائب اطمینان ایجاد نمی‌کند. این امر نباید اثرات جانبی که به دقت در مدل‌های عددی معنکس نمی‌شود را از نظر دور بدارد؛ مواردی همچون نشسته‌های زیاد هسته به تبع کرنش‌های برشی بالا و ترک خوردگی‌های احتمالی و نفوذ آب در این ترک‌ها.


شکل‌های (۳) و (۴) مقایسه وضعیت هسته سد در حالت عادی (هسته یکنواخت) و حالتی که اثر مصالح مخلوط در قالب ضعیفتر شدن مصالح در ترازهای بالایی مدل شود (هسته ناحیه‌بندی شده) را مقایسه می‌کند. به رغم ایجاد کرنش برشی قابل توجه در هسته ناحیه‌بندی شده، ضریب اطمینان پایداری کل سد از تغییرات شرایط هسته چندان متأثر نشده است.

واژه‌های کلیدی: هسته نفوذناپذیر سدهای خاکی، تحلیل دینامیکی، فشار آب حفره‌ای اضافی، محاسبات اجزاء محدود

شکل (۳): توزیع کرنش برشی پس از اعمال زلزله به: (الف) هسته یکنواخت؛ (ب) هسته ناحیه‌بندی شده

شکل (۴): سطح گسیختگی در آتالیز پایداری پس از اعمال زلزله به: (الف) هسته یکنواخت؛ (ب) هسته ناحیه‌بندی شده