

Record Extraction and System Identification for Soil-Structure Systems Using Blind Source Separation Method

Hossein Jahankhah

Associate Professor, Geotechnical Engineering Research Center
h.jahankhah@iiees.ac.ir

Alireza Ghafouri

This research proposes an output-only procedure to extract seismic input motion and identify systems with severe closely-spaced modes incorporating a partial system identification approach. The procedure is named Orthogonally Aided-Blind Source Separation (OA-BSS) and is conducted in two sequential phases. In the first phase, it is intended to answer a set of major existing questions in the literature including: "Is it possible to replace the need for the identification of the whole structure with a partial identification approach to increase the speed and convenience of input extraction?" If the response is positive, then "What is the performance of such an approach in identifying challenging systems with severe closely-spaced modes?" In previous studies, the accuracy of estimated modal parameters for closely-spaced modes was relatively low and the case of severe closely-spaced modes was not sufficiently studied which is addressed in this research. As the next main question, "Is there any way to obtain the free vibration portion of a structure response that is oscillating due to cease of the earthquake by just considering measured outputs on the structure?" The advantage of using this free vibration portion is that the input-free structures are more convenient to be identified rather than utilizing the whole seismic record, especially in the presence of closely-spaced modes. The last but not the least question is that "What is the impact of noise on the efficiency of the method?" In order to provide proper answers for this phase, a framework is proposed that employs new methods to detect the free vibration portion of the response histories and clustering the candidate points to find the first mode shape in a blind modal identification (BMI) procedure. The first mode frequency and damping along with the mass matrix distribution of the system are calculated using an orthogonality-based optimization process. The identified features mentioned are utilized next for input motion extraction without needing to know the system's higher mode characteristics. Next, higher mode characteristics are detected in succeeding steps considering the removal of each identified mode share from the total response at the end of each step. The perfect performance of the framework was proved against two

استخراج تحریک ورودی و شناسایی سیستم‌های خاک-سازه با استفاده از روش جداسازی کور سیگنال منابع

حسین جهانخواه

h.jahankhah@iiees.ac.ir

علیرضا غفوری

این تحقیق یک روش خروجی محور جدید تحت عنوان روش جداسازی کور سیگنال منابع مبتنی بر تعامل برای استخراج تحریک ورودی لرزه‌ای و شناسایی سیستم‌های رایج و سیستم‌های دارای مودهای نزدیک به هم با استفاده از رویکرد شناسایی پاره‌ای ارائه می‌نماید. چارچوب مذکور، روش‌های جدیدی را برای تشخیص نقطه آغاز ارتعاش آزاد سیستم در انتهای زلزله و خوشه‌بندی اطلاعات مودی برای یافتن اولین شکل مود سازه بکار می‌گیرد که بهبودی در روش‌های مرسوم شناسایی مودال کور است. فرکانس و نسبت میرایی مود اول به علاوه ماتریس توزیع جرم سازه با استفاده از یک تابع هدف مبتنی بر تعامل طی یک فرایند بهینه‌یابی شناسایی می‌گردد. موارد ذکر شده که همگی صرفاً مربوط به مود اول هستند برای استخراج رکوردهای زلزله و بدون نیاز به شناسایی مودهای بالاتر مورد استفاده قرار می‌گیرند. به این مفهوم شناسایی پاره‌ای اطلاق می‌گردد. سپس قابلیت‌های روش در شناسایی مشخصات مودهای بالاتر به صورت گام‌به گام ارائه می‌شود. به این منظور در هر گام سهم هر مود شناسایی شده در انتهای هر مرحله از خروجی‌های سازه حذف می‌گردد که باعث کاهش اثرات تداخلی بین مودی و حل چالش ناهمگنی انرژی مودها نسبت به هم می‌گردد. چنین تغییری منجر به افزایش دقت و سهولت شناسایی می‌گردد. عملکرد این روش ابتدا بر روی دو مدل عددی واقع بر روی بستر صلب با میرایی کلاسیک که مودهای یکی از آنها کمی نزدیک به هم و دیگری شدیداً نزدیک به هم است مورد بررسی قرار گرفته و از این طریق رکوردهای ورودی و نیز مشخصات سیستم سازه‌ای دارای مودهای نزدیک به هم با موفقیت شناسایی می‌گردد. در ادامه روش OA-BSS برای شناسایی سیستم خاک-سازه و استخراج رکوردهای چند مؤلفه‌ای بسط و توسعه می‌یابد. در این حالت میرایی سیستم غیرکلاسیک بوده و تعداد مؤلفه‌های تحریک ورودی زلزله به فونداسیون بیش از یک مؤلفه خواهد بود. در این شرایط، مودهای سیستم به شکل مختلط هستند که شناسایی آنها را دشوار می‌سازد. همچنین ضابطه تعامل مودهای مختلط در حالت سیستم خاک-سازه با سیستم‌های کلاسیک بسیار متفاوت است. علاوه بر این صرفاً با داشتن اطلاعات مود اول نمی‌توان همه مؤلفه‌های ورودی سیستم را شناسایی نمود. به‌منظور برطرف نمودن چالش‌های مذکور، ابتدا الگوریتم خوشه‌بندی ارائه شده با اضافه نمودن شرط جدید برای شناسایی اولین شکل مود مختلط سیستم مهیا می‌گردد. با اعمال تغییرات در ضابطه تعامل، یک تابع هدف جدید مبتنی بر تعامل مودهای مختلط تعریف می‌گردد که پس از حل آن ماتریس توزیع جرم-سختی سیستم خاک-سازه (که برای اولین بار در این پژوهش معرفی خواهد شد) و مشخصات فرکانس طبیعی و نسبت میرایی مود اول شناسایی خواهد شد. مود دوم سازه پس از حذف سهم مود اول سازه و اعمال شرط جدید تعامل در الگوریتم خوشه‌بندی مورد شناسایی قرار می‌گیرد و با داشتن این دو مود دو مؤلفه حرکتی سیستم خاک-سازه

simulated synthetic structures with mild and severe closely-spaced modes. In the second phase, a complementary set of challenging issues are stuck on the board to be solved.

The first issue in this phase is “Is there any way to extract multi-component input motions of the soil-structure system (SSS) without any need to identify the whole system?” Secondly, “How much information is required for the simultaneous extraction of multi-component input motions?” Another important question involves “What adjustments are required to make the proposed method to be applicable for non-classical systems with complex modes?” As a next question, “How can the presence of high damping and especially over-damped modes, which is normally the case when SSI dominates, be addressed in the identifying process?” To answer this second round of questions, the former framework is extended to the identification of the foundation input motions (FIMs) in a SSS. In this context, first, it is discussed that the multi-component FIMs under seismic excitation can be extracted via partial identification of the system instead of identifying the whole one. A new clustering method is addressed for identifying a few complex modes in a sequential process starting with the first complex mode. The mass-stiffness matrix distribution (MSD), as well as period-damping characteristics of the first mode shape, are then determined using the information from the previous step through an orthogonality-based optimization process. Next, by removal of the first mode share from the total response, the second complex mode shape and its properties are found through the same clustering and optimization process used in the former steps. Using the information of the first and second modes along with the estimated MSD, translational and rotational components of FIM are extracted then. To demonstrate the capability of the method, a numerical model is synthesized with nonclassical damping which is a usual feature in soil-structure systems. It is shown that, regardless of the identification of other modes, the information gained from the partial identification process is enough to recover the translational and rotational components of foundation input motion with a high level of accuracy.

Keywords: Output-only identification, Blind modal identification, Closely-spaced modes, Input-motion extraction, Soil-structure system identification, Nonclassical damping with complex modes

قابل شناسایی خواهد بود. لازم به ذکر است در رویکرد پیشنهادی، تعداد مودهای شناسایی شده سیستم باید حداقل به تعداد ورودی‌های سازه باشد (مفهوم شناسایی پاره‌ای در حالت سیستم خاک‌سازه) و بیش از آن نیازی نیست. همچنین مودهای بالاتر سیستم خاک‌سازه با این روش قابلیت شناسایی خواهند داشت. به منظور بررسی عملکرد این روش، یک مدل عددی از سیستم خاک‌سازه با دو مؤلفه حرکتی افقی و دورانی تحت بررسی قرار می‌گیرد و مشخصات مودی و هر دو مؤلفه ورودی آن با موفقیت شناسایی می‌گردد.

واژه‌های کلیدی: استخراج تحریک ورودی، اندرکنش خاک سازه، مودهای نزدیک به هم، روش جداسازی کور سیگنال منابع مبتنی بر تعامل، میرایی غیر کلاسیک