

Seismic Hazard Analysis of Iranian Plateau Using Seismic, Geodetic, and Geological Data

Hamid Zafarani

Professor, Seismology Research Center

h.zafarani@iiees.ac.ir

Alireza Lotfi

Probabilistic Seismic Hazard Analysis (PSHA) as the most prevalent approach to evaluate earthquake hazard is commonly based on the earthquake catalogs. Although previous studies show that the recurrence time of the large-magnitude events is more than ~1000-2000 years in large areas of the Iranian plateau, the available historical and instrumental seismicity record is limited. Therefore, factors such as the incompleteness of catalogs, long-term return periods of large earthquakes, insufficient short-term instrumental records lead to unreliable results in catalog-based seismic hazard analysis. In some regions of the world, such as California, Canada, Japan, New Zealand, and Italy, geodetic and geological information has been combined with catalog information and used by researchers in order to estimate earthquake hazards. The results show that the estimated earthquake occurrence rates are higher than the rates obtained from methods that only use the seismic catalog data. Therefore, new approaches in seismic hazard analysis can increase knowledge and answer questions related to the spatio-temporal distribution of earthquakes. On the other hand, the uncertainties of the strong ground motion parameters are also reduced as the output of seismic hazard analysis.

Considering the seismicity of Iran and the shortcomings of recorded seismic catalogs, the purpose of this study is to present the first combined (hybrid) seismic hazard model of the Iranian plateau using seismic, geodetic, and geological data. For this purpose, the results of the comprehensive deformation model of the Iranian plateau which is available, have been used. The model is fitted to the latest Iranian data set data sets, including fault traces, geologic fault offset rates, GPS velocities, principal stress directions, and velocity boundary conditions. The main outcome of the deformation model is a continuous strain rate for the Iranian plateau. In this study, the strain rates obtained from the deformation model have been converted into the seismic moment rates and then the earthquake occurrence rate using the relevant equations, which are the basis of deformation-based seismic hazard analysis. Comparison with the catalog-based long-term occurrence rates shows that in all seismotectonic provinces of the Iranian plateau, the occurrence rate based on deformation is higher than the occurrence rate based on catalogs. The lowest value for the ratio of deformation-based

تحلیل خطر لرزه‌ای فلات ایران با استفاده از اطلاعات ژئودتیکی و زمین‌شناسی

حمید زعفرانی

استاد پژوهشکده زلزله‌شناسی h.zafarani@iiees.ac.ir

علیرضا لطفی

تحلیل خطر لرزه‌ای احتمالاتی به عنوان متدائل‌ترین روش ارزیابی خطر زلزله معمولاً بر اساس کاتالوگ‌های لرزه‌ای صورت می‌گیرد. مطالعات نشان می‌دهد که دوره بازگشت زلزله‌های بزرگ در بیشتر مناطق فلات ایران بیش از ۱۰۰۰ تا ۲۰۰۰ سال است. این موضوع در حالی است که زلزله‌های تاریخی و دستگاهی ثبت شده محدود می‌باشند. از این رو عواملی چون کامل نبودن کاتالوگ‌ها، دوره بازگشت‌های بلند مدت زلزله‌های بزرگ و قوی و همچنین ثبت دستگاهی کوتاه مدت ناکافی کاتالوگ‌ها منجر به نتایج غیر قابل اطمینان در تحلیل خطر مبتنی بر کاتالوگ می‌گردد. در برخی از مناطق جهان مانند کالیفرنیا، کانادا، ژاپن، نیوزیلند و ایتالیا اطلاعات ژئودتیکی و زمین‌شناسی با اطلاعات حاصل از کاتالوگ‌ها ترکیب شده و جهت تخمین خطر زلزله توسط محققان مورد استفاده قرار گرفته است. نتایج نشان می‌دهد نرخ وقوع زلزله‌های تخمین زده شده با ترکیب اطلاعات، بزرگتر از نرخ‌های بدست آمده از روش‌هایی است که تنها از کاتالوگ لرزه‌ای استفاده می‌کنند، لذا این رویکرد نوین در تحلیل خطر لرزه‌ای می‌تواند باعث افزایش دانش و پاسخ بهتر به مسائل مرتبط با توزیع مکانی-زمانی زمین‌لرزه‌ها شود. از طرفی عدم قطعیت‌های موجود در پارامترهای جنبش نیرومند زمین به عنوان خروجی تحلیل خطر لرزه‌ای نیز کاهش می‌یابند.

با توجه به لرزه‌خیزی کشور ایران و کاستی‌های اطلاعات زمین‌لرزه‌های ثبت شده، هدف از این پژوهش ارائه اولین مدل خطر لرزه‌ای ترکیبی فلات ایران با استفاده از داده‌های لرزه‌ای، ژئودتیکی و زمین‌شناسی می‌باشد. بدین منظور از نتایج یک مدل تغییرشکل جامع فلات ایران که اطلاعات آن در دسترس است، استفاده شده است. مدل مورد نظر نسبت به جدیدترین مجموعه اطلاعات ایران شامل نقشه گسل‌های بروزرسانی شده، نرخ لغزش گسل‌های زمین‌شناختی، سرعت‌های GPS، جهت‌نشانهای اصلی و شرایط مزی سرعت، برازش داده شده است و خروجی اصلی آن توزیع نرخ کرنش پیوسته در فلات ایران می‌باشد. در این پژوهش، نرخ کرنش‌های بدست آمده از اطلاعات تغییرشکلی با استفاده از روابط مربوطه به نرخ گشتاور لرزه‌ای و سپس به نرخ وقوع زلزله‌ها تبدیل شده‌اند. این نرخ‌ها، اساس کار برای تحلیل خطر مبتنی بر تغییرشکل هستند. مقایسه با برآورد نرخ وقوع‌های بلند مدت مبتنی بر کاتالوگ‌های موجود نشان می‌دهد که در تمام ایالات لرزه‌زمین‌ساخت فلات ایران نرخ وقوع مبتنی بر تغییرشکل بیش از نرخ وقوع مبتنی بر کاتالوگ است. کمترین مقدار نسبت نرخ وقوع مبتنی بر تغییرشکل به نرخ وقوع مبتنی بر کاتالوگ برای ایالت زاگرس برابر با ۱/۲۱ و بیشترین مقدار آن برای ایالت ایران مرکزی برابر ۸/۸۸ می‌باشد. پس از برآورد نرخ وقوع مبتنی بر اطلاعات تغییرشکلی به مدل‌سازی و تعیین هندسه و مشخصات منابع لرزه‌زا پرداخته شده است. منابع لرزه‌زا

occurrence rate to catalog-based ones is 1.21 for Zagros province and the largest amount is 8.88 for Central Iran. Using the estimated deformation-based occurrence rate, the geometry and characteristics of seismogenic sources have been modeled. Seismogenic sources are defined as a grid of square area sources covering the whole of Iran and their geometric characteristics are determined based on tectonic, geological, and seismic data.

The results of the model which are presented in the form of hazard curves and hazard maps for the return periods of 475 years and 2475 years show that the deformation-based hazard model resulted in a higher hazard level than conventional catalog-based models. However, due to the damping property of the hazard analysis relationship, this increase in hazard level is not as high as the moment increase ratio of the two models. The highest PGA values are observed in the Azerbaijan and Alborz provinces, where the highest strain rates are also observed. Also, in the Kopeh Dagh province, the strip that extends from the east of Alborz to Mashhad and passes through the city of Bojnourd, has high PGA values. For Central and Eastern Iran, where large earthquakes with long-term recurrence times occur, the PGA values estimated from the deformation-based model are higher than the PGA values obtained from the catalog-based model. Compared to the smoothed seismicity hazard models, for cities that are not close to the fault and do not have high amounts of seismic strain around them, the results of the smoothed seismicity models and the deformation-based model are consistent with each other. While for areas close to active faults, hazard estimation models using the smoothed seismicity method provide a lower hazard level. It was also observed that if geological characteristics of active faults near a site are available and used in a catalog-based model, the estimates are expected to be more consistent with the results of the deformation-based model. Also, the results show that if there are consecutive large earthquakes in a region, there is a possibility of misleading results due to the temporary high activity rate.

After presenting the deformation-based seismic hazard model and its results for the Iranian plateau, a deformation-based seismic hazard model is provided for the Makran seismotectonic province. Makran is a subduction zone and has complex tectonics. Therefore, the hazard model is presented separately from the other parts of the Iranian plateau for this province. The results of the Makran deformation-based hazard model show a coastline with high PGA values in this subduction zone which can affect important ports in this area. In the final part of this study, a deformation model is provided with the use of block modeling method for the Zagros province, considering that important infrastructures such as Bushehr power plant, South Pars field, and Asaluyeh are located in it and are affected by seismic hazard potential due to seismogenic sources of this

به گونه‌ای تعریف شده‌اند که به صورت یک شبکه کل ایران را پوشش دهنده و مشخصات هندسی آنها براساس شواهد تکتونیکی، زمین‌شناسی و لرزه‌خیزی تعیین شده است.

نتایج مدل که به صورت منحنی‌های خطر و نقشه‌های خطر شتاب برای دوره بازگشتهای ۴۷۵ سال و ۲۴۷۵ سال ارائه شده است، نشان می‌دهد که مدل مبتنی بر تغییرشکل عموماً سطح خطر بالاتری نسبت به مدل‌های رایج مبتنی بر کاتالوگ ارائه می‌دهد. بالاترین مقدار شتاب در ایالت‌های آذربایجان و البرز مشاهده می‌شود، جایی که بالاترین مقدار نرخ کرنش نیز در آن قرار دارد. در کپه‌داغ نیز نواری که از شرق البرز تا مشهد گسترش یافته و نیز از شهر بجنورد عبور می‌کند، دارای مقادیر شتاب بالایی است. برای ایران مرکزی و شرقی که در آن زلزله‌هایی بزرگ با دوره بازگشت طولانی مدت رخ می‌دهد، مقادیر PGA که از مدل خطر مبتنی بر تغییرشکل تخمین زده می‌شوند، بالاتر از مقادیر PGA حاصل از مدل مبتنی بر کاتالوگ است. در مقایسه با مدل‌های لرزه‌ای هموار شده، برای شهرهایی که نزدیک به گسل نیستند و مقادیر بالایی از کرنش لرزه‌ای در اطراف آنها وجود ندارد، نتایج حاصل از مدل‌های لرزه‌خیزی هموار شده و مدل مبتنی بر تغییرشکل با یکدیگر سازگارند. در حالی که برای مناطق نزدیک گسلهای فعال، مدل‌های برآورد خطری که از روش لرزه‌خیزی هموار شده استفاده می‌کنند، سطح خطر کمتری را ارائه می‌دهند. همچنین مشاهده شد اگر خصوصیات زمین‌شناسی گسلهای فعال در نزدیکی یک سایت در دسترس باشد و در یک مدل مبتنی بر کاتالوگ بکار برد شود، انتظار می‌رود که برآوردها با نتایج مدل مبتنی بر تغییرشکل مطابقت بیشتری داشته باشند. همچنین نتایج نشان می‌دهد که در صورت وجود زمین‌لرزه‌های بزرگ متواتی در یک منطقه، احتمال نتایج گمراه کننده به دلیل نرخ فعالیت زیاد موقتی وجود دارد.

پس از ارائه مدل خطر لرزه‌ای مبتنی بر تغییرشکل و نتایج آن برای فلات ایران، برای ایالت مکران با توجه به فرورانشی بودن و تکتونیک پیچیده آن، مدل خطر مبتنی بر تغییرشکل به صورت مجزا از سایر مناطق فلات ایران ارائه شده است. نتایج حاصل از مدل خطر مکران نشان‌دهنده یک نوار ساحلی با شتاب بالا در ناحیه فرورانشی این ایالت می‌باشد که می‌تواند با پتانسیل بالای لرزه‌زایی بنادر مهم واقع در آن ناحیه را تحت تأثیر قرار دهد. در پخش پایانی این مطالعه، برای ایالت زاگرس با توجه به آنکه که تأسیسات و زیرساخت‌های مهمی مانند نیروگاه بوشهر، منطقه پارس جنوبی و عسلویه در آن قرار دارند و تحت تأثیر پتانسیل لرزه‌زایی و خطر ناشی از منابع لرزه‌زای این ایالت می‌باشند، به ساخت مدل تغییرشکلی با استفاده از روش مدلسازی بلوکی جهت تعیین نرخ لغزش برخی از گسلهای اصلی موجود در زاگرس پرداخته شده است.

واژه‌های کلیدی: مدل تغییرشکلی، مدل خطر لرزه‌ای مبتنی بر تغییرشکل، نرخ کرنش، نرخ گشتاور لرزه‌ای، نرخ وقوع زلزله.

Category 2 Centre
under the auspices
of UNESCO

Regional Education and
Research Center on Earthquake
Risk Management and Resilience
for West and Central Asia

International Institute of
Earthquake Engineering and Seismology

province. The outcome of the Zagros block model is the slip rate of some major faults in this province.

Keywords: Deformation model, Deformation-based seismic hazard model, Strain rate, Seismic moment rate, Earthquake occurrence rate