

Seismic Structure of Crust and Upper Mantle Beneath the North Lut Desert from Tomography and Receiver Function Analysis

Farzam Yaminifard

Associate Professor, Seismology Research Center
faryam@iiees.ac.ir

Meysam Mahmoodabadi, Mohammad Tatar, Hossein Kianimehr, Ahmad Rashidi Boshrabadi

The eastern Iranian mountain range has been raised after the collision of Afghan and Lut blocks by the Late Cretaceous and the understanding of its uppermost mantle structure is important to explain the geodynamical evolution of eastern Iran. However, the upper mantle structure has been poorly studied in this region. In this study, we use teleseismic earthquake data recorded by 43 temporary and permanent seismic stations in the northern Lut block and eastern Iranian ranges in order to investigate the seismic structure and tectonic evolution of the collision zone (Figure 1). A nonlinear tomography method is applied to a data set consisting of 6589 relative arrival time residuals to constrain perturbations of P-wave velocity in the upper mantle. The resultant tomographic images exhibit higher velocities of the Afghan block with respect to the lower velocities beneath the Lut block. The high-velocity anomalies at the deeper parts of the model are consistent with a possible founded continental lithosphere, above which the strong low-velocity anomaly represents the consequent asthenospheric upwelling, which was the mantle source of magmatism over the Lut block.

We also carried out Ps receiver function (RF) analysis on 2160 high-quality RFs. The Common Conversion Point (CCP) stacking and single-station analysis are applied to the data for crustal and uppermost mantle structure. Then, by jointly inverting the RFs with Rayleigh wave group velocity dispersion curves, a shear-wave velocity (Vs) model was driven to 100 km depth beneath the northern part of the EIR and Lut block. Several distinct west-dipping velocity interfaces are consistent with the imbrication of the crust. There is a ~100 km length west-dipping low-velocity layer that may represent a significant intra-continental decoupling or shear zone, along which the Eurasian margin underthrust beneath the Lut block. The average crustal thickness in the region is ~40 km, while beneath the footwall of the decoupling reaches >~50 km. As well as the crustal thickness, the average topography varies from ~1 km on the Eurasian margin in the east to ~2 km above the low-velocity layer in

بررسی ساختار سرعتی پوسته و گوشته فوقانی در نیمه شمالی کویر لوت با روش‌های توموگرافی و تحلیل توابع گیرنده

فرزام یمینی‌فرد

faryam@iiees.ac.ir

میثم محمودآبادی، محمد تاتار، حسین کیانی‌مهر،
احمد رشیدی بشرآبادی

به منظور تحقیق سازوکار تغییر شکل داخلی و ساختار سرعتی پوسته و گوشته فوقانی در منطقه زمین درز سیستان، یک شبکه متراکم لرزه‌نگاری متشکل از ۱۳۳ ایستگاه به مدت ۹ ماه توسط پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله در منطقه بیرجند و شمال شرق آن نصب گردید، شکل (۱). نتایج بدست آمده از توموگرافی امواج دورلرز آنومالی‌های سرعت بالا در مناطق شمالی در سمت بلوک افغان را نشان می‌دهند، شکل (۲). همچنین در زیر کوهستانهای شرق ایران سرعت امواج لرزه‌ای کاهش زیادی دارد. در اعمق بیشتر سرعت نیز بالاتر است و این آنومالی کم سرعت محدود به اعمق کمتر از ۱۲۰ کیلومتر می‌شود. وجود این آنومالی کم سرعت در زیر این منطقه می‌تواند نشان دهنده سنتگهای گرمتر گوشته‌ای مرتبط با بالا آمدگی آستنوسفر یا ذوب بخشی لیتوسفر فرورونده باشد.

در این مطالعه، همچنین با استفاده از وارون‌سازی توابع گیرنده و منحنی پاشندگی امواج سطحی مدل سرعت یک‌بعدی در زیر ۲۳ ایستگاه مورد بررسی قرار گرفت و به کمک آنها مدل دو بعدی سرعت برشی تهیه گردید. این مطالعه تغییرات سرعتی زیادی را در شرق ایران نشان می‌دهد و ضخامت مoho از حدود ۴۰ کیلومتر در زیر بلوک لوت تا ۵۴ کیلومتر در زیر کوهستانهای شرق ایران تغییر می‌کند. مدل‌های یک‌بعدی سرعتی تغییرات زیادی را در ساختار سرعتی امواج S هم در پوسته و هم در لیتوسفر نشان می‌دهند. نتایج حاصل از این مطالعه لایه‌های مختلفی را در پوسته منطقه نشان می‌دهد که به نظر می‌رسد دارای شیب رو به غرب باشند. در گوشته فوقانی بلوک لوت در اعمق بیش از ۸۰ کیلومتر یک ناهنجاری کم سرعت دیده می‌شود که با مشاهدات توموگرافی دورلرز نیز همخوانی دارد. این لایه کم سرعت همان طور که در توموگرافی دورلرز به آن اشاره شده است ممکن است در ارتباط با فرآیند لایه لایه شدگی لیتوسفر و جدایش بخش‌های پایینی آن به همراه بالا آمدن آستنوسفر باشد.

در این منطقه، جهت عمد ناهمسانگردی بدست آمده به موازات بیشترین میزان برش در پوسته و گسلهای شمال-جنوب منطقه است. مدل‌سازی یک لایه‌ای ناهمسانگردی در این منطقه برای بعضی از ایستگاه‌ها میزان کاهش انرژی کمی را نشان می‌دهد. تطابق جهت سرعت ناهمسانگردی با پیشینه برش در پوسته و گسلهای امتداد-لغز منطقه نشان دهنده تطابق دگر‌شکلی‌های پوسته و لیتوسفر است اما میزان جدایش پایین موج برشی و کاهش انرژی پایین می‌تواند بیانگر وجود لایه‌بندی در ناهمسانگردی باشد که از تفاوت ناشی از ناهمسانگردی در لیتوسفر و آستنوسفر نشأت می‌گیرد. به نظر می‌رسد که در شرق ایران یک جریان آستنوسفری که در جهت شمال-جنوب نیست بر روی پارامترهای ناهمسانگردی مشاهده شده، تأثیر می‌گذارد. این جریان ممکن است همخوان با جهت حرکت صفحات

the west. This may indicate that the crust is doubled due to the westward underthrusting of the Eurasian margin. The upper boundary of this low-velocity layer is covered by a distinct high-velocity layer that could be a remnant of the oceanic crust observed as ophiolites at the surface. The presence of distinct low velocities in the uppermost mantle deeper than ~ 80 km in the region can support delamination of the lowermost lithospheric mantle. Crustal seismic anisotropy was analyzed with the use of arrival time variations (cosine moveout) of converted shear phases as a function of back-azimuth. Harmonic functions to the arrival time variations of Ps phases were fitted in order to obtain dipping interfaces and plunging anisotropy beneath a station. The average fast axis, which is parallel to the Sistan suture zone, might be related to the direction of faults and the presence of highly deformed flysch as a response to continental collision.

تکتونیکی در جهت شمال شرقی باشد.
واژه‌های کلیدی: ساختار لرزه‌ای، پوسته، گوشه فوکانی، توابع گیرنده،
توموگرافی غیر خطی، کوبه لوت

Keywords: Seismic structure, Crust, Upper mantle, Receiver functions, Non-linear tomography, Lut desert

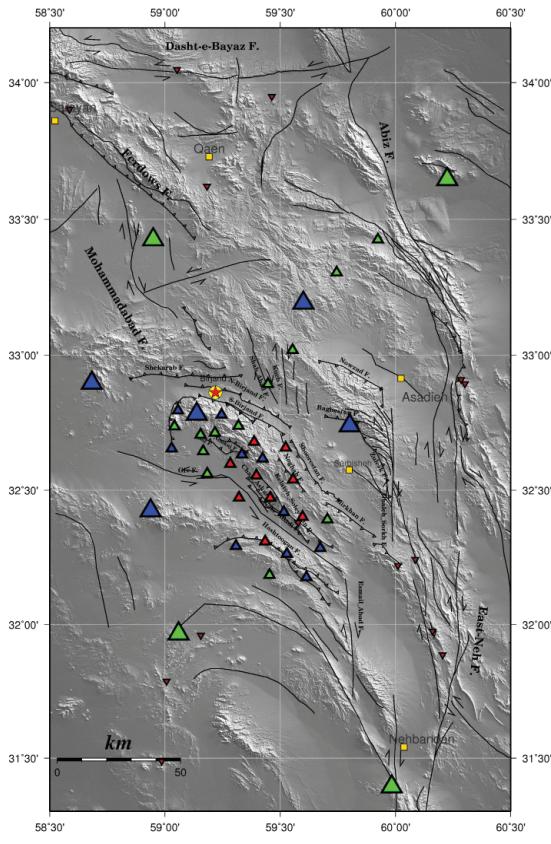


Figure 1

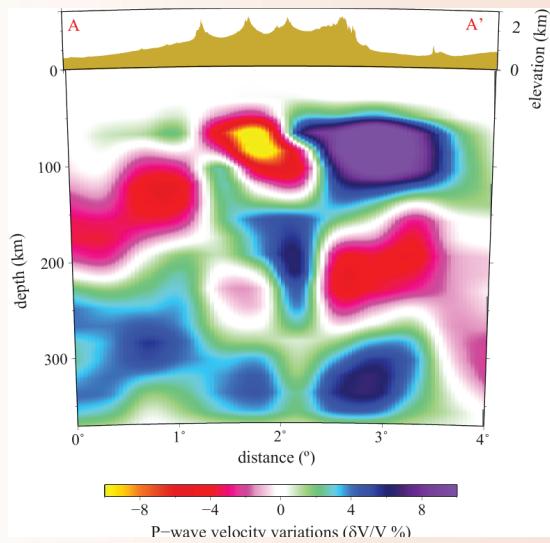


Figure 2