

Seismicity and Crustal Velocity Structure of the Birjand Region Using Local Tomography

Farzam Yaminifard

Associate Professor, Seismology Research Center
faryam@iiees.ac.ir

Mohammad Hashemi Gazar, Mohammad Tatar

East of Iran is one of the most seismically active areas with several instrumentally recorded seismic events greater than 7 in Iran. Due to the small number of local seismic stations, the seismicity of eastern parts of Iran has not been mapped with sufficient accuracy and its diffused seismicity associated with faults and geological structures in many regions, especially in the Birjand region, has remained unknown, Figure (1). In addition, very little is known about the local velocity model of the region that is essential for improving the accuracy of earthquake locations in this region. Considering geological complexity that exists in the east of Iran, including presence of ophiolite units, abundant intrusive and main faults, information obtained from the earthquakes recorded by dense temporary seismic networks can be complementary to geological observations on active faults and lead to better understanding of the regional tectonics. The role of fault systems with different orientations and mechanisms in the crust deformation and their interaction are the important aspects of this research project.

The Sistan suture zone is being surrounded by the Makran subduction zone in the south, the Helmand block in the East, and the Lut block in the west and north where some significant earthquakes occurred. A dense temporary seismic network in the Birjand region was installed to investigate the internal deformation style of the Sistan suture zone caused by the Lut-Eurasia convergence in eastern Central Iran.

Results of this study show that the majority of earthquakes occurred in the depth range of 3 to 16 km in the upper crust. There is a clear correlation between trends of seismicity and topography implying faulting as the major tectonic process that has formed mountains in this region. A combination of strike-slip and reverse focal mechanisms suggests slip distribution as the major mechanism of internal deformation in the south of Birjand that is more consistent with the wedge confining process without a necessity for fault rotations, although a hybrid model is also probable, Figure (2). Local tomography images show a high velocity anomaly beneath Bagheran mountain range in the south of Birjand city implying uplifting of lower crust beneath this

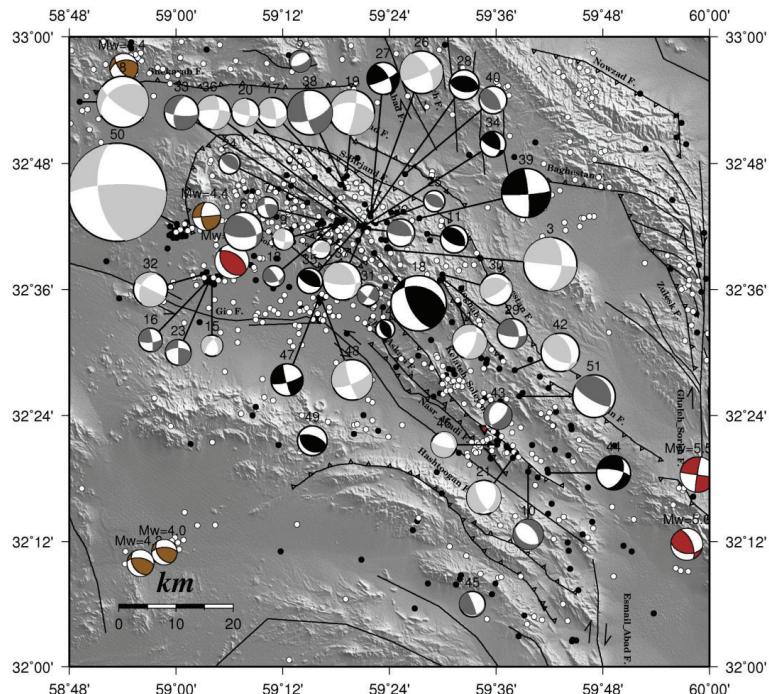
بورسی لرزه‌خیزی و مدل سرعتی پوسته به روش توموگرافی محلي در منطقه بيرجند

فرزام یمینی‌فرد

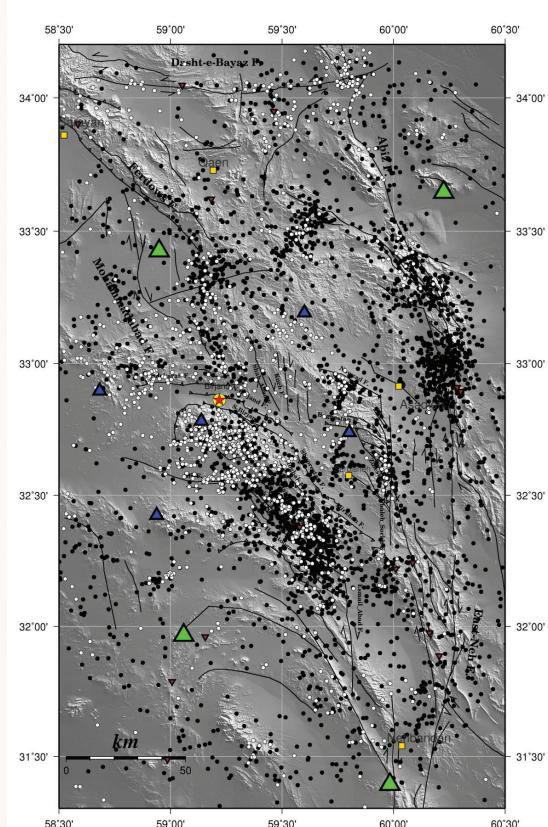
دانشیار پژوهشکده زلزله‌شناسی
faryam@iiees.ac.ir

محمد هاشمی گازار، محمد تاتار

شرق ایران یکی از مهم‌ترین مناطق رخداد زمین‌لرزه‌های بزرگ در ایران است که به علت تعداد کم ایستگاه‌های لرزه‌نگاری، لرزه‌خیزی آن با دقت مناسبی به نقشه در نیامده و ارتباط لرزه‌خیزی غیر متمرکز آن با گسلها و ساختارهای زمین‌شناسی در بسیاری از مناطق مانند منطقه بیرجند ناشناخته باقی مانده است، شکل (۱). علاوه بر آن تاکنون مدل سرعتی محلی معتبری برای کاهش عدم قطعیت تعیین پارامترهای چشمی زمین‌لرزه‌ها در این منطقه ارائه نشده است که از اهداف مهم این تحقیق می‌باشد. با توجه به پیچیدگی‌های زمین‌شناسی که در شرق ایران وجود دارد، از جمله وجود واحدهای افیولیتی، توده‌های نفوذی و گسلهای اصلی متعدد، اطلاعات کسب شده از زمین‌لرزه‌های ثبت شده توسط شبکه‌های لرزه‌نگاری موقت متراکم، مکمل اندازه‌گیریهای زمین‌شناسی بوده و با شناسایی گسلهای فعال، اطلاعات ارزشمندی در خصوص تکتونیک منطقه حاصل می‌شود. نقش سیستم‌های گسلی در تغییر شکل منطقه و اندکنش این سیستم‌ها با یکدیگر که با سازوکارهای متفاوت در امتدادهای مختلف قرار گرفته‌اند و ساختار سرعتی سه‌بعدی پوسته فوقانی از موارد مهمی است که در این تحقیق پس از نصب یک شبکه متراکم موقت لرزه‌نگاری متشکل از ۳۳ ایستگاه لرزه‌نگاری به مدت نه ماه توسط پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله در منطقه بیرجند و آنالیز داده‌های ثبت شده در این شبکه مورد بررسی قرار گرفته است.


نتایج این مطالعه نشان می‌دهد که بیشتر زمین‌لرزه‌های رخ داده در این بازه زمانی در عمق‌های ۳ تا ۱۶ کیلومتر تعیین محل شده‌اند که تأییدی بر شکننده بودن بخش قابل توجهی از پوسته فوقانی در این منطقه است. علاوه بر آن همبستگی واضحی بین لرزه‌خیزی و روند توپوگرافی مشاهده می‌شود که نشان می‌دهد گسل‌شیش در این منطقه از عوامل مهم شکل‌دهنده توپوگرافی در این منطقه است. سازوکارهای حل شده زمین‌لرزه‌ها نشان دهنده توزیع لغزش در این منطقه بین گسلهای معکوس با امتداد شمال غرب جنوب شرق و گسلهای امتداد لغز با امتدادهای شمالی-جنوبی و شرقی-غربی است که می‌تواند حاصل فرآیند فشار گوهای شکل لبه شمال شرقی بلوک لوت به ساختارهای مقاوم در شرق و شمال آن باشد که به تنها یا به همراه دوران گسلهای امتداد لغز باعث کوتاه‌شدنی با روند غالب شمال غربی-جنوب شرقی در شمال منطقه زمین درز سیستان شوند (شکل ۲). متوسط مدل سرعتی در این منطقه حاصل از وارون‌سازی یک بعدی زمان‌های سیر زمین‌لرزه‌های محلی ثبت شده توسط شبکه لرزه‌نگاری موقت سه لایه با سرعتهای ۵/۲، ۵/۱ و ۶/۲ کیلومتر بر ثانیه با ضخامت‌های به ترتیب ۵ و ۷ کیلومتر واقع بر نیم فضا را تفکیک نموده است. متوسط نسبت سرعت موج تراکمی به برشی در بخش فوقانی پوسته در این ناحیه برابر ۱/۷۳ تخمین زده شده است. توموگرافی زمان سیر زمین‌لرزه‌های ثبت

mountain because of faulting and/or folding.


Keywords: Seismicity, Birjand region, Crustal structure, Local tomography

شده در شبکه موقت ساختار پر سرعتی را در زیر رشته کوه باقران در جنوب شهر بیرجند نشان می دهد که می تواند حاصل بالا آمدن بخش های پایین تر پوسته در زیر این کوه در اثر گسلش و/یا چین خوردگی باشد.

واژه های کلیدی: لرزه خیزی، منطقه بیرجند، مدل پوسته، توموگرافی
 محلی، ساختارهای زمین شناسی

شکل (۲)

شکل (۱)