

Stress Studies in the Transition Zone Between the Zagros and Makran

Shahrokh Pourbeyranvand

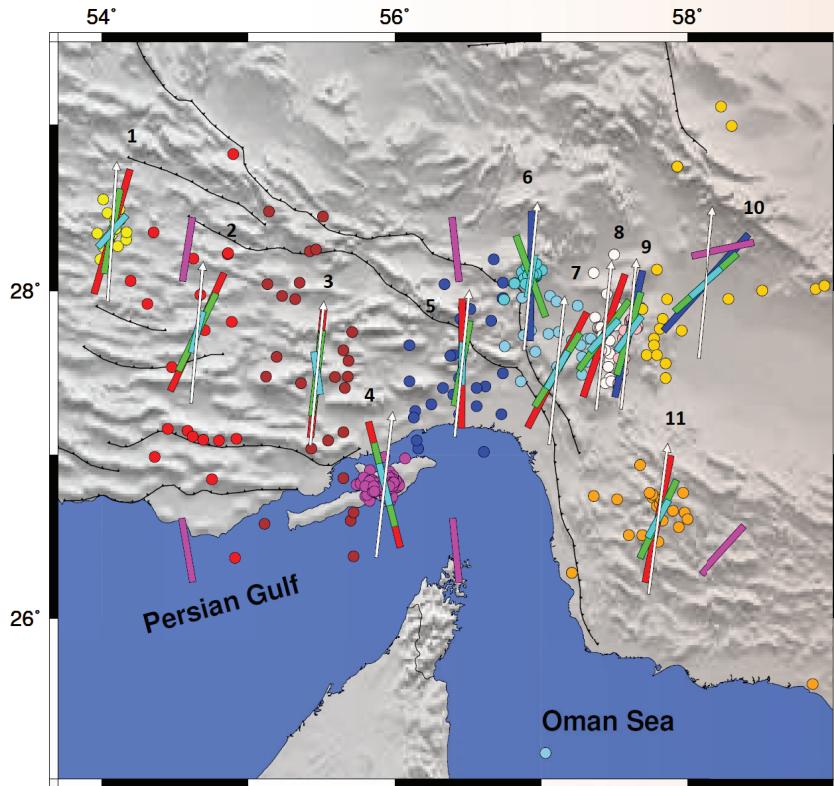
Assistant Professor, Seismology Research Center
beyranvand@iiees.ac.ir

Mohammad Tatar

Knowing about stress variations in the Zagros and Makran transition zone in the southwest of Iran is necessary to study the deformation resulting from the oblique collision between the Eurasian and the Arabian plates and gain insight into the complicated tectonics of this crucial region. The stress tensor inversion of earthquake focal mechanisms is one of the methods used to study tectonic stresses. In this study, the direction of maximum horizontal stress in the transition zone between the Zagros and Makran was obtained using this method. The results indicate significant changes in the principal axes of stress in this region and show the stress field's complicated pattern. The rotation on the right of the Oman Line takes place in a clockwise manner from west to east around this imaginary line. Still, on the other side, especially where Qeshm Island is located, the opposing direction of the maximum horizontal stress direction indicates the stress field's complexity. The axis of maximum horizontal stress in this region is compared with the single earthquake focal mechanism's P axis. Since almost all earthquake faulting mechanisms are of reverse and strike-slip type, the comparison shows a good agreement between the resulting directions. The maximum horizontal stress directions are also investigated concerning the trend of the active faults consistent with the fault mechanism in the studied areas. Focal mechanism data were used to obtain information on the state of stress in 11 subdivisions of the data, including teleseismic and local events in the Zagros region. The investigation shows acceptable agreement between the observed faulting mechanisms and what can be predicted based on the fault plane orientations and stress directions in the area. These alignments also correlate with the data from other geophysical methods that exhibit a similar rotation around the Strait of Hormuz. The plate motion velocity vectors were estimated using the NOVEL-1A model. In most areas west of the Oman Line, the direction of the tectonic plate velocity vector and the direction of maximum horizontal stress coincide. This indicates that stress is applied in the general direction of convergence. In some areas, which are mostly scattered

مطالعات تنش در منطقه گذار میان زاگرس و مکران

شهرخ پوربیرانوند


استادیار پژوهشکده زلزله‌شناسی
beyranvand@iiees.ac.ir

محمد تاتار

آگاهی از تغییرات تنش در ناحیه گذار زاگرس و مکران در جنوب غرب ایران برای بررسی تغییر شکل حاصل از برخورد مایل بین اوراسیا و صفحه عربی و به دست آوردن بینشی در مورد تکتونیک پیچیده این منطقه حیاتی است. وارون‌سازی تانسور تنش سازوکارهای کانوئی زمین‌لرزه‌ها یکی از روش‌های مورد استفاده برای بررسی تنش‌های زمین‌ساختی است. در این مطالعه، جهت تنش افقی بیشینه در ناحیه گذار میان زاگرس و مکران با استفاده از این روش به دست آمد. نتایج حاکی از تغییرات قابل توجه در محورهای اصلی تنش در این منطقه بوده و الگوی پیچیده میدان تنش را نشان می‌دهد. چرخش در سمت راست خط عمان در جهت عقربه‌های ساعت از غرب به شرق حول این خط فرضی صورت می‌گیرد. با این حال، در سمت دیگر، به ویژه در جایی که جزیره قشم قرار دارد، جهت مخالف تنش افقی بیشینه نشان دهنده پیچیدگی میدان تنش است. محور تنش افقی بیشینه در این منطقه با محور P سازوکارهای کانوئی زمین‌لرزه‌های منفرد مقایسه شده است. از آنجایی که تقریباً تمام سازوکارهای گسل‌ش زمین‌لرزه‌ها از نوع معکوس و راستالغز هستند، مقایسه تطابق خوبی بین جهت‌های حاصل را نشان می‌دهد. جهت‌های تنش افقی بیشینه نیز در رابطه با روند گسل‌های فعال و سازوکار گسل‌ش در مناطق مورد مطالعه، بررسی شده‌اند. داده‌های سازوکار کانوئی برای به دست آوردن اطلاعات وضعیت تنش در 11 زیرمجموعه از داده‌ها، از جمله رخدادهای دور لرزه ای و محلی در منطقه زاگرس مورد استفاده قرار گرفتند. این بررسی‌ها توان بر اساس جهت‌گیری‌ها همچنین با داده‌های سایر روش‌های می‌دهد. در منطقه این جهت‌گیری‌ها همچنین با داده‌های سایر روش‌های ژئوفیزیکی که چرخش مشابهی را در اطراف تنگه هرمز نشان می‌دهند، مطابقت دارد. بردارهای سرعت حرکت صفحه تکتونیکی نیز با استفاده از مدل NOVEL-1A برآورد شدند. در بیشتر مناطق واقع در غرب خط عمان با راستای بردار سرعت صفحات زمین‌ساختی و جهت تنش بیشینه افقی می‌یکدیگر همخوانی دارند. این موضوع نشان دهنده اعمال تنش در راستای کلی همگرایی است. در بعضی مناطق، که بیشتر در شرق خط عمان پراکنده هستند، این راستاهای با یکدیگر زوایایی می‌سازند که بیانگر اعمال تنش در راستاهایی غیر از راستای کلی همگرایی در منطقه هستند. این تفاوت‌ها که با داده‌های مختلط ژئوفیزیکی از جمله مطالعات مغناطیسی تأیید شده‌اند، بیانگر اختلافات زمین‌ساختی در دو سوی خط عمان هستند. این موضوع می‌تواند نشان دهنده تأثیر گسل‌های از پیش موجود بر دگرگشکلی ناشی از همگرایی در نواحی مختلفی از منطقه مورد مطالعه و مشاهده پدیده افزای دگرگشکلی باشد. این پدیده در سایر نقاط دنیا نیز در مناطق گذار بین نواحی فرونش و نواحی برخورده قاره به قاره دیده می‌شود. تفاوت‌های پوسته اقیانوسی و قاره‌ای ممکن است مسؤول این تغییر جهت‌ها در این

east of the Oman Line, these directions make angles with each other that indicate stress is applied in directions other than the general direction of convergence in the region. These differences, which have been confirmed by various geophysical data, including magnetic studies, indicate geological differences on both sides of the Oman Line or Strait of Hormuz. This may indicate the effect of pre-existing faults on the deformation caused by convergence in different regions and the observation of the deformation partitioning phenomenon in the study area. This phenomenon is also seen in other parts of the world in the transition zones between subduction zones and continental-continent collision zones. The oceanic and continental crust differences in the area may be responsible for the variation of these directions in these regions. By providing a new perspective, this study can help in understanding the tectonic structure and processes in this complex region.

Keywords: Stress, Zagros-Makran transition zone, Inversion, Focal mechanism, Earthquake

تغییرات تنش بیشینه افقی در ناحیه مورد مطالعه. میله‌های قرمز رژیم تنش فشارشی و میله‌های آبی رژیم تنش امتداد لغز را نشان می‌دهند. نقاط رنگی سازوکارهای کانونی موجود در وارون‌سازی خوش‌های مختلف مورد استفاده در استفاده از مدل NUVEL 1A است. زمین‌لرزه‌های مورد استفاده برای هر گروه از داده‌ها با اعداد ۱ تا ۱۱ مشخص گردیده‌اند. میله‌های صورتی محورهای نرخ گرنش فشاری به دست آمده از GPS هستند.