

Three-dimensional Crustal Seismic Structure of South and Southeastern Iran from Local and Regional Travel Time Tomography

Farzam Yaminifard

Associate Professor, Seismology Research Center
faryam@iiees.ac.ir

Hossein Kinaimehr, Mohammad Tatar

Based on travel time data from reported earthquakes by two IRSC (Iranian Seismic Center) and BIN (The Broadband Iranian National Seismic Network) for the southern Iran including some phase information from seismic stations in south neighboring countries in the period 2006 to July 2017, we calculated velocity structure of crust and uppermost mantle in this region. Since the data quality is very important in tomography studies, first of all the data set was cleaned from large individual reading errors and by identifying event reports from both networks belonging to the same earthquake (a process called event pairing), a data set of 1115 well-locatable events was obtained with a total number of 24606 P-wave observations. This data set then was used to calculate a regional minimum 1-D model in order to obtain the velocity structures of southern Iran. As the most stations in the southwest of Iran are temporary and mostly too noisy to get reliable conclusions for uppermost crust, considering large earthquakes are needed for understanding the relation between folding at the surface and faulting at the depth in the Zagros mountain belt. By this aim, a temporary local seismic networks was installed around of the epicenter of Kaki earthquake (on 9 April, 2013 with $M_w=6.2$, in the southwest of Iran) following the mainshock. This network provided us with a high precision data set in order to get more information about the main structures in this region.

In this study, we applied an approach to calculate the so-called Minimum 1-D model with corresponding station corrections that may serve for routine uniform high-precision earthquake location and as an initial reference model for 3-D seismic tomography. The obtained velocity images are consistent with known tectonic structure in studied region. According to these results, the low velocity structures in the upper crust for the Zagros mountain belt might be as indicative of deformed thick sediments, and in mid-crust these structures can be related to many different basement faults. In lower crust, the velocity variations depict some colder areas such as the Lut Block, the west of Makran subduction zone, and some parts of the Zagros.

تعیین ساختار سه بعدی سرعتی پوسته جنوب و جنوب شرق ایران به روش توموگرافی زمان سیر فازهای محلی و ناحیه‌ای

فرزام یمینی‌فرد

faryam@iiees.ac.ir

حسین کیانی‌مهر، محمد تاتار

در این مطالعه، ابتدا با ترکیب بولتن‌های لرزه‌ای و استفاده از روش توموگرافی زمان سیر محلی یک مدل یک بعدی در مقیاس منطقه‌ای برای جنوب شرق ایران حاصل گردید که به عنوان مدل اولیه جهت بدست آوردن تصاویر توموگرافی در عمق‌های مختلف مورد استفاده قرار گرفت. ساختارهای سرعتی حاصل از فرآیند توموگرافی در مقیاس منطقه‌ای همخوانی خوبی را با ساختارهای تکتونیکی شناخته شده در منطقه به نمایش می‌گذارد. بر طبق این نتایج می‌توان به طور خلاصه به ساختارهای کم‌سرعت در کمربند کوهستانی زاگرس اشاره داشت که در پوسته بالایی در ارتباط با رسوبات ضخیم تغییر شکل یافته در اثر گسلش و چین‌خورده این منطقه بوده و در پوسته میانی می‌توان به وجود گسل‌های متعدد بی‌سنگی اشاره داشت. بر اساس این نتایج در بخش پوسته تحتانی می‌توان این احتمال را مطرح نمود که پوسته پایینی در مناطقی همچون بلوک لوت، غرب مکران و بخش‌هایی از زاگرس به مراتب سردرت از بقیه مناطق می‌باشد. در این بخش از پوسته همچنین می‌توان وجود آنومالی‌های کم‌سرعت در زاگرس، بخش شمالی سیستم گسلی ZMP، کمربند ماقمایی ارومیه-دختر (UDMA) و بخش‌های شمالی داشت لوت را در ارتباط با دمای بالا و ذوب بخشی دانست. در مورد ضخامت پوسته، مشخصه داشتن پوسته ضخیم از ویژگی‌های مناطقی همچون زاگرس مرکزی، بخش‌های زون دگرگونی سندنج-سیرجان، حوالی زون گسلی ZMP و بخش‌هایی از ایران مرکزی می‌باشد.

این نتایج نشان‌دهنده وجود گوشته بالایی گرم و ضعیف در مناطق با ساختارهای کم‌سرعت نظری حوضه ماقمایی ارومیه-دختر (UDMA) و بلوک لوت نسبت به زاگرس می‌باشد که این ویژگی می‌تواند ناشی از ذوب بخشی حاصل از فعالیت‌های آتش‌نشانی کوارترنر در این مناطق باشد. آنومالی پرسرعت واضحی در بخش شرقی زون فرورانش مکران در این عمق می‌تواند در ارتباط با فرورانش سنگ‌کرده اقیانوسی به سمت شمال باشد و این در حالی است که با وجود آنومالی کم‌سرعت در بخش غربی مکران، دو احتمال مطرح می‌گردد که صفحه فرورونده از نوع سنگ کرده قاره‌ای بوده و این کاهش سرعت می‌تواند ناشی از گذر سنگ‌کرده اقیانوسی به قاره‌ای باشد و احتمال دوم این که یک سنگ‌کرده اقیانوسی با سرعت خیلی پایین Pn می‌باشد. به طور کلی، به دلیل نزدیکی این آنومالی‌های کم‌سرعت به زون فرورانش مکران، می‌توان ارتباط آنها را به این فرورانش فعال مطرح نمود. در این مطالعه، همچنین با استفاده از زاگرس مرکزی زمان رسید امواج P و S در منطقه کاکی بوشهر واقع در زاگرس مرکزی یک ناحیه کم‌سرعت با مقدار پایین نسبت V_p/V_s در محدوده عمقی ۸ تا ۱۲ کیلومتر بدست آمد که می‌تواند شاهدی بر وجود ساختار نمکی هرمز در عمق و نقش آن

In this part of crust, low velocity anomalies in Zagros, the northern part of the ZMP, north of the Lut Block, and UDMA can be related to high temperature and partial melting in these areas. According to our results, Central Iran, Zagros, partly SSZ, and around of ZMP are characterized by thick crust. The uppermost mantle in UDMA, the Lut Block are observed as hot areas related to partial melting because of Quaternary volcanism. The observed high velocity anomaly in the eastern Makran can be indicative of active subduction of oceanic lithosphere toward north. However, in the west of this zone the existence of low velocity structures might be a low velocity oceanic lithosphere or a low velocity continental lithosphere.

By using the information of a local network in this study, a low velocity layer with the low V_p/V_s ratio was obtained in depth range of 8km to 12km by the inversion of arrival time of P and S phases. This low velocity zone likely indicates the Hormoz series at depth. The tomography images also show a fault with NE dipping which can be the cause of Kaki earthquake. Also in shallower depths in the range of 3 to 5km, there are some areas with the large V_p/V_s ratio might be related to a fluid saturated material. The termination of seismicity in these areas is likely related to the probable of their roles as cease of rupturing toward the surface.

Keywords: Seismic structure, Crust, Upper crust, Travel time tomography, Eastern Iran

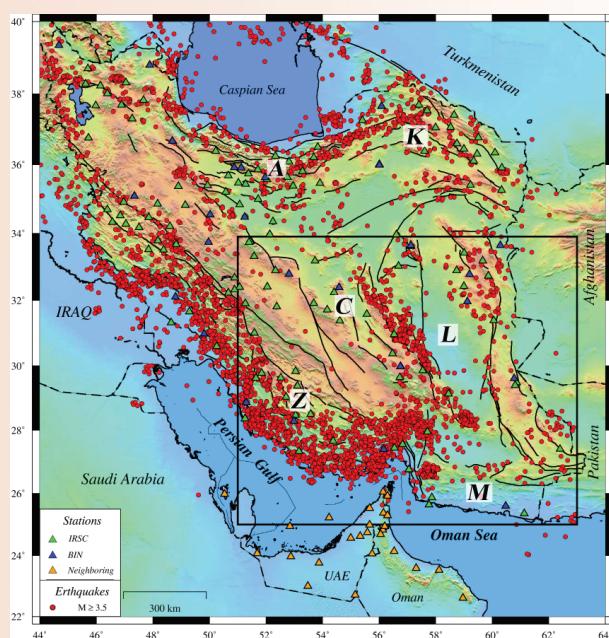


Figure 1

به عنوان عامل مهم تأثیرگذار در تغییر شکل تکتونیکی این منطقه باشد. همچنین تصاویر ساختارهای سرعتی در عمق، احتمال رخداد زمین‌لرزه کاکی بر روی یک گسل با شیب رو به سمت شمال شرق مطرح می‌سازد که پوشش رسوبی را قطع کرده است که می‌تواند در کوتاه‌شدن پوشش رسوبی و چین‌خوردگی در این بخش از کمربند چین‌خورد ساده زاگرس (SFB) نقش داشته باشد. ضمناً در این بخش از مطالعه یک لایه بین اعماق ۳ تا ۵ کیلومتری با مقدار زیاد نسبت V_p/V_s مشاهده می‌شود که می‌تواند در ارتباط با محیطی اشیاع از سیال باشد که با توجه به عدم لرزه‌خیزی در اعماق کمتر از این لایه، احتمال نقش آن در جلوگیری از ادامه شکست حاصل از زمین‌لرزه‌های بزرگ در این کمربند مطرح می‌گردد.

واژه‌های کلیدی: ساختار لرزه‌ای، پوسته، گوشته فوقانی، توموگرافی زمان سیر، شرق ایران

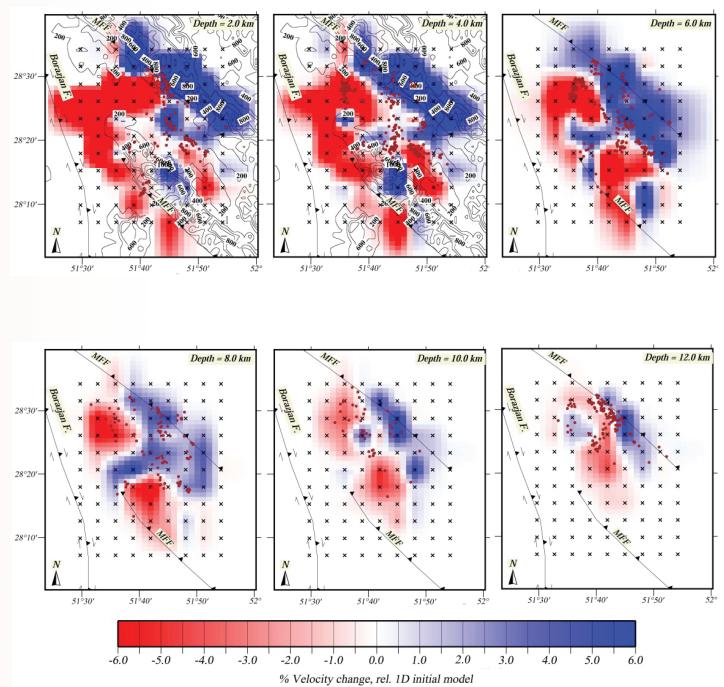


Figure 2