

Three-dimensional Modeling for Seismic Response of Pile-raft in Saturated Sand to Investigate Local Site Effect

Yaser Jafarian

Associate Professor, Geotechnical Engineering Research Center
yjafarianm@iiees.ac.ir

Mojgan Fallahzadeh

Saturated loose soils have constituted superficial layers of the ground in vast regions of the country. For instance, geotechnical site investigations have revealed that shoreline of the Mazandaran Sea involves thick layers of uniform sand mixtures. Presence of such soil deposits in the northern and southern Iran, which are prone to seismic activity, may produce severe damages due to liquefaction occurrence. To prevent earthquake damages to the structures relied on liquefiable soils, two strategies might be preferred: (1) improvement of liquefiable soil and ceasing liquefaction, and (2) bypassing the liquefiable layer via deep foundations. The latter strategy aims to transfer the superstructure load to the underlying stiff layer by end-bearing piles while raft foundation is also required because the superficial liquefiable soil may be unable to provide sufficient bearing capacity due to seismic pore pressure generation. In the pile-raft systems passing through the liquefiable layer, it seems that the liquefiable layer has less influence to the response of the system. However, several interactions in the system such as pile-liquefiable soil, pile-pile, pile-raft, and raft-liquefiable soil could result in a sophisticated mechanism; affected the amplification of the upward propagating seismic waves. Amplification of seismic wave denotes variations of amplitude and frequency content of upward propagating wave passing through the reinforced liquefiable soil layer. It is expected that the pile-raft system in conjunction with the liquefiable layer considerably change seismic response of the ground compared to the free-field liquefiable ground in the absence of pile-raft system. In the design of routine projects for which the national seismic building code is employed, there is no clear recommendation to account for the influence of pile-raft on the site amplification factors. The currently used building codes have poorly addressed the problem; and therefore, considerable research might be required.

The aim of this project is to study the characterization of seismic wave amplification by considering the presence of piled raft in liquefaction site. To achieve this goal, three-dimensional numerical modeling of piled raft and free-field

مدل سه بعدی برای پاسخ لرزه‌ای پی-شمغ در لایه خاک با قابلیت روانگرایی

یاسر جعفریان

دانشیار پژوهشکده مهندسی زلزله‌نیک yjafarianm@iiees.ac.ir

مزگان فلاحزاده

یکی از مهم‌ترین مباحث زلزله‌نیک لرزه‌ای مسأله اثرات محلی ساختگاه می‌باشد. حرکت ارتعاشی بستر سنگی تابع اثرات منبع زلزله و مسیر حرکت امواج در داخل پوسته سنگی است، اما در مورد حرکت ارتعاشی بر روی سطح زمین، عامل سوم یعنی شرایط محلی ساختگاه از اهمیت خاصی برخوردار است. اگر چه مطالعات گسترشده‌ای در ارتباط با اثرات ساختگاهی انجام شده است، در حوزه‌ی مرتبط با خاکهای روانگرا و به طور مشخص تأثیر متقابل سازه و خاک روانگرا به نظر می‌رسد ابهامات بسیاری وجود دارد. خاکهای سست اشبع که مستعد روانگرایی هستند در بسیاری از مناطق کشور اعمق اولیه‌ی زمین را پوشش داده‌اند. این خاکها به ویژه در سواحل شمالی و جنوبی کشور به علت حضور در مناطق زلزله‌خیز می‌توانند منجر به وارد نمودن خسارات عمده‌ای به سازه‌ها شوند. راههای بسیاری برای بهسازی این خاکها وجود دارد که مانع روانگرا شدن آنها شود. هرچند با یک استراتژی دیگر می‌توان اجازه روانگرا شدن به این لایه‌ها را داد و با استفاده از پی‌های عمیق متقابله به علت حضور در مناطق زلزله‌خیز می‌توانند منجر به وارد نمودن خسارات عمده‌ای به سازه‌ها شوند. راههای بسیاری برای بی‌سازی این خاکها وجود دارد که مانع روانگرا شدن آنها شود. در چنین مواردی به علت کمبود ظرفیت باربری سطحی نیاز به پی‌سطحی هم وجود دارد و مجموعه‌ی پی‌سطحی و شمع‌ها سیستم پی-شمغ را تشکیل می‌دهند. اگر چه در یک سازه متقابله به علت زلزله‌خیز می‌شوند و تصور می‌شود که عیقیق تر مقاوم (که روانگرا نمی‌شود) منتقل می‌شوند و تصور می‌شود که لایه روانگرا نقشی در باربری ندارد لکن به علت اندک‌نشهای خاک روانگرا-شمغ، شمع-شمغ، شمع-پی‌سطحی و خاک روانگرا-پی‌سطحی شرایطی پیچیده بوجود می‌آید که به طور حتم بر بزرگ‌نمایی امواج تأثیر می‌گذارد. منظور از بزرگ‌نمایی امواج، تغییر مشخصات دامنه و محتوای فرکانسی موج هنگام عبور از لایه شمع-خاک روانگرا است. بنابراین، می‌توان انتظار داشت که اندک‌نشهای موجود شرایط متفاوتی را نسبت به لایه روانگرا بدون شمع در شرایط میدان آزاد و همچنین لایه غیرروانگرا ایجاد نماید. به لحاظ آینین‌نامه‌ای، این موضوع در طراحی‌های متدالو ساختمنهای متقابله بر پی-شمغ در خاک روانگرا لحاظ نمی‌شود و توصیه‌ای برای تغییر ضرایب بزرگ‌نمایی به صورت ویژه در این باب وجود ندارد. در این تحقیق، تلاش شده است تا به عنوان یک مطالعه اولیه به این بحث بپردازد تا اهمیت موضوع و میزان تأثیر حضور پی-شمغ در خاک روانگرا بر بزرگ‌نمایی امواج و تغییرات محتوای فرکانسی بررسی شود.

در این تحقیق، با استفاده از تحلیل سه‌بعدی همبسته دینامیکی در حوزه زمان، رفتار پی-شمغ در خاک ماسه‌ای اشبع و خشک در شرایط لرزه‌ای مورد بررسی قرار گرفته است. بدین منظور، با استفاده از برنامه اجزای محدود کد باز OpenSees v2.5 در ابتدا با استفاده از نتایج آزمایش

ground in both liquefied and dry sand deposit is carried out. Results of centrifuge experiments of a piled raft structure on liquefied sand are used to evaluate the capabilities of the numerical model constructed in OpenSees, as a state-of-the-art numerical tool. Fully-coupled solid-fluid 3D nonlinear numerical simulations are performed in OpenSees, in combination with the pressure-dependent-multyield soil constitutive model that enables dynamic effective-stress modeling of soil liquefaction in addition to embedded pile and superstructure elements.

In this research, response spectra of free field and piled raft system in liquefaction site are directly compared in terms of seismic wave amplification. Moreover, comparison of the free field and piled raft response spectra in dry and liquefaction condition is used to investigate the effect of excess pore water pressure on site response analysis. The schematic plots of these conditions are illustrated in Figure (3). Acceleration response spectra of piled raft and free field in dry and liquefaction conditions are demonstrated in Figure (4). The results in Figure (4 a, b) indicate that acceleration response spectra of piled raft and free field in liquefaction condition is smaller than those of the dry condition. This is caused by excess pore water pressure generation and soil stiffness degradation in saturated sand. In addition, the reduction of piled raft response spectra is smaller than that of the free field ground. Since the piles are located in dense layer, the effect of liquefaction occurrence in upper layer was not considerable on acceleration response spectra of the piled raft. Moreover, the difference between response spectra of piled raft in dry and liquefaction conditions is mainly affected by excess pore water pressure generation, reduction of soil stiffness in lower layer and interaction between piles and upper layer liquefied soil.

In Figure (4 c, d), it is observed that spectral acceleration of piled raft in dry condition at $T = 0.4$ sec was about 17 percent larger than that of the free field condition. However, the spectral acceleration of piled raft in liquefaction condition at $T = 0.4$ sec was about 63 percent larger than that of the free field. It is inferred that reduction of upper layer stiffness was not considerable for the no liquefaction condition. However, the spectral acceleration of the free field is reduced due to the occurrence of liquefaction and soil stiffness softening in the upper layer. In general, presence of piled raft has increased stiffness of soil in dry and liquefaction conditions. In the following sections, the effects of piled raft horizontal stiffness and amplitude and frequency content of input motion on piled raft behavior are

سانتریفیوژ مدلسازی اولیه انجام شده و مدل عددی برای یک پی-شمی 2×2 صحت سنجی شده است. در شکل (۱) و (۲) به ترتیب نتایج شتاب و فشار آب حفره‌ای با نتایج مدل سانتریفیوژ مقایسه شدند. تطابق مطلوب نتایج عددی پی-شمی با نتایج آزمایشگاهی، اطمینان از روند خوب مدلسازی سه‌بعدی را ایجاد کرده است که این امر نشان می‌دهد تمامی عوامل مؤثر در نظر گرفته شده بر روی پاسخ لرزه‌ای خاک مانند تعیین مدل رفتاری و پارامترهای آن، تعیین ابعاد کلی و ابعاد المان‌های مدل، شرایط مرزی و در نظر گرفتن المان فصل مشترک خاک و شمع در حد قابل قبولی مناسب می‌باشد.

در این پژوهش، به منظور تعیین میزان تأثیر حضور سیستم پی-شمی در خاک به بررسی تفاوت میان طیف پاسخ ساختگاه میدان آزاد و سیستم پی-شمی در خاک روانگرا پرداخته شده است. همچنین به منظور بررسی تأثیر ایجاد اضافه فشار آب حفره‌ای بر پاسخ ساختگاه، طیف پاسخ میدان آزاد و سیستم پی-شمی در خاک روانگرا و خشک با یکدیگر مقایسه شده‌اند. در شکل (۳)، تصویر شماتیک چهار حالت میدان آزاد و سیستم پی-شمی در شرایط روانگرا و خاک خشک نشان داده شده است. همان‌طور که در قسمت‌های الف و ب شکل (۴) نشان داده شده است، طیف پاسخ شتاب سیستم پی-شمی و میدان آزاد در شرایط روانگرایی کمتر از طیف پاسخ شتاب در خاک خشک بوده که این امر به دلیل ایجاد اضافه فشار آب حفره‌ای در خاک روانگرا و در پی آن نرم‌شدگی خاک می‌باشد. شایان ذکر است که میزان کاهش طیف پاسخ سیستم پی-شمی کمتر از شرایط میدان آزاد است. به عبارت دیگر اختلاف طیف پاسخ شتاب سیستم پی-شمی در شرایط روانگرا و خشک بسیار کمتر از اختلاف طیف پاسخ میدان‌های آزاد در این دو حالت می‌باشد. زیرا شمع‌ها در هر دو حالت در خاک متراکم قرار دارند و در نتیجه روانگرا شدن خاک در لایه بالای تأثیر کمی بر طیف پاسخ شتاب که از طریق شمع به سطح زمین انتقال می‌یابد، دارد. همچنین اختلاف طیف پاسخ در سیستم پی-شمی در دو حالت می‌تواند به دلیل افزایش فشار آب حفره‌ای، کاهش سختی خاک در لایه دوم و همچنین اندرکنش شمع‌ها و خاک روانگرا شده‌ی فوقانی باشد.

در قسمت‌های ج و د شکل (۴)، طیف‌های پاسخ شتاب پی-شمی و میدان آزاد در شرایط روانگرا و خشک با یکدیگر مقایسه شده‌اند. در شرایط خشک، طیف‌های پاسخ پی-شمی و میدان آزاد در پریود 0.4 ثانیه در حدود ۱۷ درصد با یکدیگر اختلاف دارند اما در خاک روانگرا طیف پاسخ سیستم پی-شمی در پریود 0.4 ثانیه حدود ۶۳ درصد بیشتر از طیف پاسخ میدان آزاد می‌باشد. این امر نشان می‌دهد که کاهش سختی لایه بالای در صورتی که شرایط روانگرایی در آن رخ ندهد، زیاد نمی‌باشد. اما زمانی که لایه بالا روانگرا شود، در اثر نرم‌شدگی، طیف پاسخ شتاب در میدان آزاد بسیار کاهش می‌یابد. همان‌طور که مشاهده شده است وجود سیستم پی-شمی سبب افزایش سختی ساختگاه در هر دو شرایط خاک روانگرا و خشک شده و در نتیجه باعث ایجاد اختلاف در طیف پاسخ ساختگاه میدان آزاد و سیستم پی-شمی می‌گردد. همچنین وجود آب و ایجاد اضافه فشار آب حفره‌ای نیز باعث تغییر در پاسخ ساختگاه خواهد شد.

در ادامه، به تأثیرات سختی جانبی سیستم پی-شمی، دامنه و محتوای

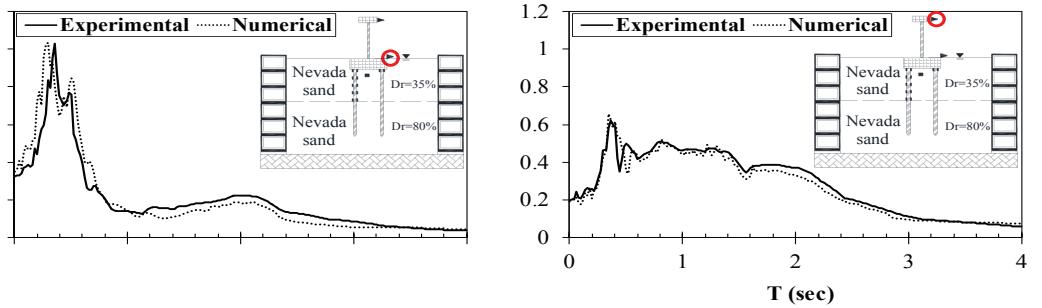
studied. As shown in Figure (5), the spectral acceleration increases due to increase of piled raft horizontal stiffness. The effect of excess pore water pressure and soil softening on acceleration response spectra reduced due to increase of piled raft horizontal stiffness.

Figure (6) presents spectral acceleration of piled raft on harmonic input motion with amplitudes of $0.15g$ and $0.3g$. By increasing input motion amplitude, the rate of excess pore water pressure generation and the duration of dissipation phase increased. As a result, the upper soil layer remained in liquefaction condition for longer duration. Since the piles tip are penetrated within the dense layer, the acceleration of piled raft at the ground surface increased due to the increase of input motion amplitude.

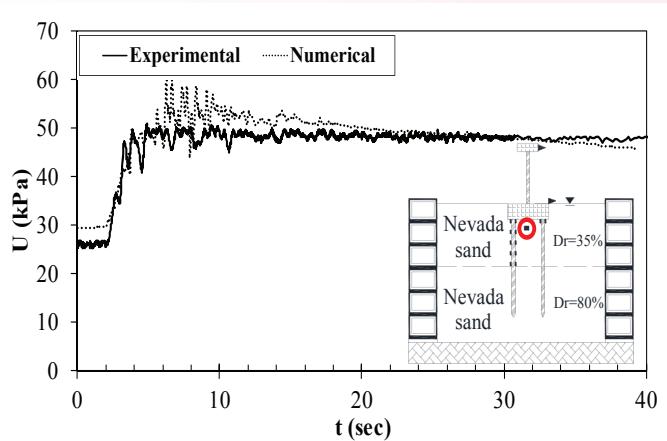
The acceleration response spectra of piled raft under harmonic input motion with periods of 0.1 sec, 0.4 sec and 0.7 sec are demonstrated in Figure (7). By increasing the period of input motion, duration of strong motion increased and therefore, the upper soil layer remained in liquefaction condition for longer duration. As discussed before, since the piles are of end-bearing type, the acceleration of piled raft at the ground surface increased by increment of input motion period. Results of this study indicate that site-specific analysis is necessary to account for the presence of piled-raft system for superstructure design in the sites involving thick sand layers.

Keywords: Liquefaction, Pile-raft system, Time history analysis, Site amplification, OpenSees

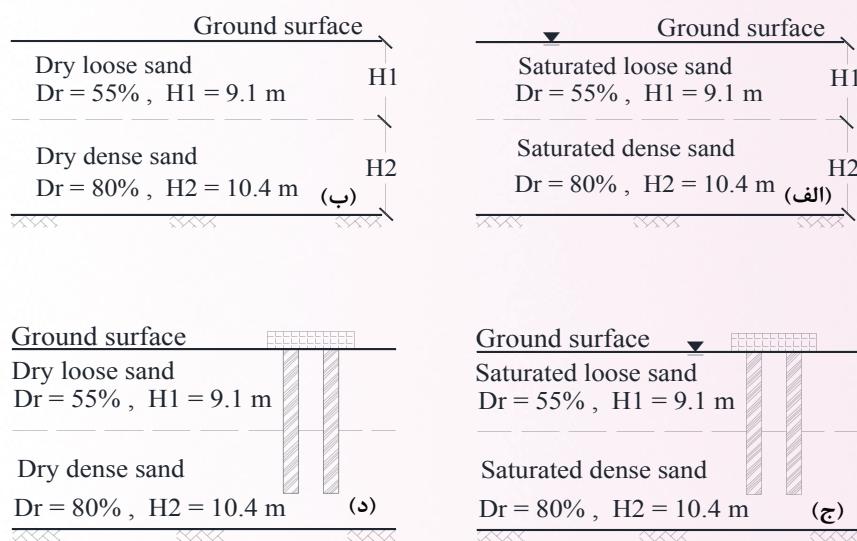
فرکانسی حرکت ورودی بر روی رفتار سیستم پی-شمع پرداخته شده است. همان‌طور که در شکل (۵) نشان داده شده است، با افزایش سختی جانبی سیستم پی-شمع، دامنه طیف پاسخ شتاب افزایش می‌یابد. این امر بیانگر آن است هنگامی که نوک شمع‌ها در خاک متراکم قرار دارد، طیف پاسخ شتاب در سطح زمین متأثر از سیستم پی-شمع بوده و در نتیجه با افزایش سختی سیستم پی-شمع، نرم‌شدنی خاک در اثر روانگرایی و

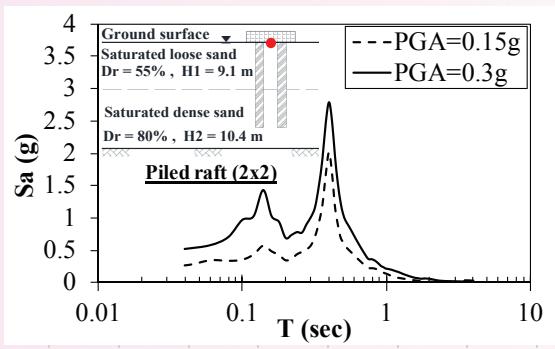

افزایش فشار آب حفره‌ای تأثیر ناچیزی بر طیف پاسخ شتاب دارد.

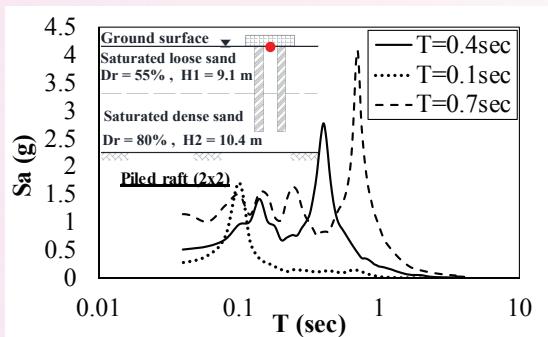
در شکل (۶)، طیف پاسخ شتاب سیستم پی-شمع تحت بار هارمونیک با دامنه‌های $0.15g$ و $0.3g$ با هم مقایسه شده‌اند. با افزایش دامنه و قوی‌تر شدن حرکت ورودی، اضافه فشار آب حفره‌ای سریع‌تر افزایش یافته و همچنین پس از اتمام حرکت لرزه‌ای نیز زمان بیشتری برای از بین رفتن این اضافه فشار آب حفره‌ای نیاز است، بنابراین خاک برای زمان طولانی‌تری در شرایط روانگرایی قرار دارد و در نتیجه می‌باشد شتاب کمتری به سطح زمین انتقال یابد. اما به دلیل اینکه شتاب انتقالی به سطح زمین از طریق سیستم پی-شمع انجام پذیرفته و انتهای شمع‌ها در لایه متراکم که در هیچ‌کدام از دو حرکت ورودی روانگرایی شده است قرار دارد، بنابراین حرکت با دامنه بزرگ‌تر، شتاب بیشتری را به سطح زمین منتقل می‌کند.

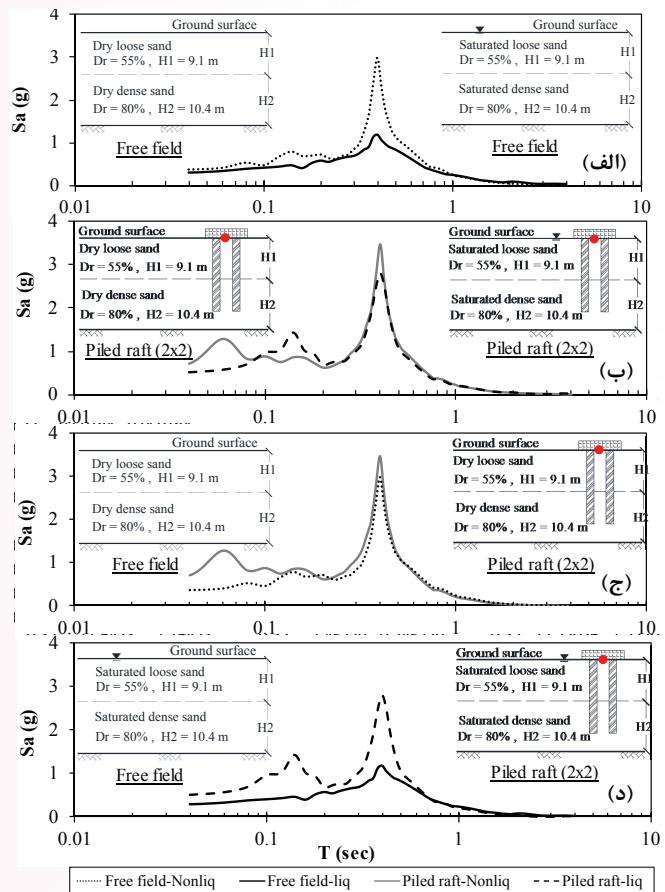

در شکل (۷)، طیف پاسخ شتاب سیستم پی-شمع 2×2 تحت بار هارمونیک با پریودهای $0/1$ ، $0/4$ و $0/7$ ثانیه نشان داده شده است. با توجه به دامنه ثابت حرکت با افزایش پریود، زمان حرکت نیرومند زمین افزایش یافته در نتیجه خاک پس از رسیدن به شرایط روانگرایی برای زمان طولانی‌تری در شرایط روانگرایی قرار می‌گیرد و بنابراین در اثر نرم‌شدنی بیشتر، ظاهراً می‌باشد شتاب کمتری به سطح زمین انتقال یابد. اما همان‌طور که پیشتر شرح داده شد، به دلیل قرار داشتن انتهای شمع‌ها در لایه دوم که غیر روانگرایی باشد، روانگرایی لایه بالا تأثیر چندانی بر طیف پاسخ شتاب در سطح زمین نداشته و با قوی‌تر شدن حرکت، شتاب انتقالی به سطح زمین افزایش می‌یابد.

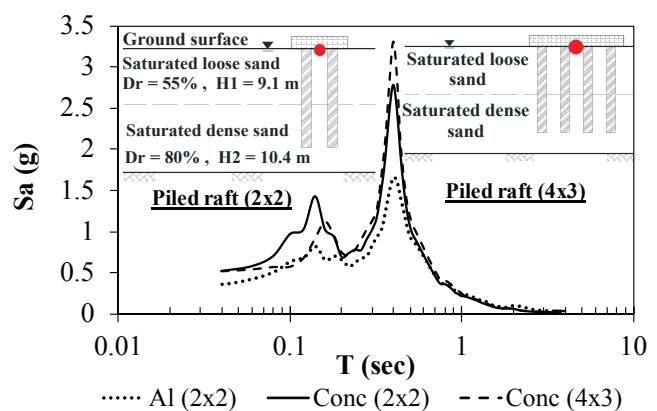
همچنین با بررسی روند طراحی لرزه‌ای سازه‌ها با استفاده از تحلیل دینامیکی تاریخچه زمانی شتاب مشخص شده است که در نظر گرفتن اثرات ساختگاهی و نحوه بهسازی خاک با شمع، در فرآیند اصلاح شتاب‌بناگشت‌های موردن استفاده برای تحلیل دینامیکی روسازه، ممکن است باعث کاهش بار لرزه‌ای طراحی وارد بر سازه شده و می‌تواند سبب طراحی بهینه‌تر و اقتصادی‌تر سازه‌های متکی بر پی-شمع شود.


واژه‌های کلیدی: روانگرایی، سیستم پی-شمع، تحلیل دینامیکی تاریخچه زمانی شتاب، بزرگنمایی ساختگاه، OpenSees


شکل (۱): مقایسه طیف پاسخ شتاب حاصل از مدلسازی عددی و آزمایشگاهی (سانتریفیوژ)، الف) در محل سازه و ب) در سطح زمین


شکل (۲): مقایسه تاریخچه فشار آب حفره‌ای حاصل از مدلسازی عددی و سانتریفیوژ در نقطه زیر پی


شکل (۳): الف) میدان آزاد در خاک اشبع، ب) میدان آزاد در خاک خشک، چ) پی- شمع در خاک اشبع،
پی- شمع در خاک خشک


شکل (۶): طیف‌های پاسخ شتاب در سطح زمین در سیستم پی- شمع 2×2 تحت بار هارمونیک با پریود $0.4/0$ ثانیه و دامنه‌های $0.15g$ و $0.3g$

شکل (۷): طیف‌های پاسخ شتاب در سطح زمین در سیستم پی- شمع 2×2 تحت بار هارمونیک با پریودهای $0.1/0.4$ و $0.7/0$ ثانیه و دامنه $0.15g$

شکل (۸): مقایسه طیف‌های پاسخ در سطح زمین، (الف) میدان‌های آزاد در شرایط خاک روانگرا و خشک، (ب) پی- شمع‌ها در شرایط خاک روانگرا و خشک، (ج) پی- شمع و میدان آزاد در خاک روانگرا

شکل (۹): مقایسه طیف‌های پاسخ شتاب در سطح زمین در سیستم پی- شمع 2×2 با جنس مصالح بتنی، آلومینیومی و پی- شمع 4×3 با جنس مصالح بتنی