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One of the important phenomena in the world of physics
is wave propagation in continuous media. The mathematical
expression of this phenomenon is discussed in the field of
materials engineering for linear elastic media in the form
of elastodynamic problems. For instance, the analysis of the
earth’s response due to seismic wave propagation caused by
a fault event is pursued in this branch of engineering using
simplifying assumptions. One effective method for solving
the problem of wave propagation in linearly behaving media
with an infinite domain is the boundary element method.
The popularity of this method compared to other methods
such as finite element methods is due to its confinement
of the problem’s division to the boundaries only in the
process of solving governing equations. Using the boundary
element method requires the fundamental solution or
Green’s function of the governing differential equation. If
the fundamental solution is used for numerically solving
the elastodynamic problem of a media with a semi-infinite
domain using the boundary element method, the problem’s
horizontal boundary must be divided up to far distances
from the point of load application or topographic features,
leading to increased computational cost. However, if the
Green’s function is used instead of the fundamental solution,
the environment’s partitioning decreases, and the accuracy
of the solutions increases due to the satisfaction of the
boundary conditions of the problem by Green’s functions.
Moreover, the computational volume is reduced due to the
decreased divided boundaries.

Providing the Green’s function for various problems in
the field of engineering and materials science is one of the
research areas that is included in the fundamental studies due
to the efforts to find analytical solutions to the differential
equations governing the environment. This thesis provides
an analytical solution for the Green’s function of the infinite
half-space environment in three-dimensional space and in
the time domain, for the homogeneous, isotropic, and linear
elasticity equation. The basis of the solution is based on the
source image as well as the Mindlin approach. To this end,
the summation of the solution of the fundamental problem
of the full-space as well as the solution of the half-space to
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the applied loads on the surface of the half-space have been
used. The fundamental solution of the problem includes
solving the elastodynamic problem for the homogeneous
three-dimensional environment with linear elastic behavior,
which has an infinite domain and is subject to a unit impact
within the environment. This problem is famous as the
Stokes problem. The basis of the solution method is based
on the use of the Lamé potential function (obtained based on
the decomposition of the Stokes-Helmholtz equation) in the
Navier equation and its transformation into two scalar and
vector wave equations. By solving the wave equations and
finding the scalar and vector wave functions, the fundamental
solution of the problem was obtained. Finding the solution
of the half-space to the applied loads on the surface of the
half-space includes solving the elastodynamic problem
for the homogeneous three-dimensional environment with
linear elastic behavior, which has a semi-infinite domain
and is subject to loads of time-dependent functions that vary
with time as Heaviside step, Dirac delta and derivatives of
Dirac delta functions. This problem is famous as the Lamb
problem. To solve this problem, similar to the method
of solving the fundamental solution of the full-space,
the governing equation was transformed into two wave
equations using the Lamé potential function. By applying
the Laplace transform to the wave equations and using the
Hankel transform in the boundary conditions of the problem,
the solution in the Laplace transmission space with respect
to the time parameter was obtained. In order to obtain the
solution in the time domain, the modified Cagniard-Pekeris
method was used. Thus, using the Mindlin approach, the
Green’s function was obtained.

1- The present research extracted and presented the
analytical response of the half-space for different positions
of the wave source and receiver. The mentioned responses
include vertical and horizontal displacements inside and on
the surface for dynamic loading on and inside the surface
of the environment. The derived Green’s functions have not
been estimated for 3D elastodynamics problems so far.

2- An important application of the derived Green’s functions
is the numerical solution of the wave propagation problem
in a three-dimensional linear elastodynamic medium with a
semi-infinite domain, in the time domain, especially with the
boundary element method. The application of these Green’s
functions in the boundary element method enables a simpler,
faster and more accurate site response analysis of grounds
with surface or subsurface topography.

3- The derived Green’s functions has been validated by
calculating the displacement of the half-space ground

A ortign 3 b33 Mol e ol

Sydiss Jold Colidions 05 9 (b el )18, s anan
o ()AL STho slds 5 sluse g5 5l oo @b gloyl Lo oS
el allis o jalite 0,0 &g cend s a4y 5500 s e
oolinasl e eily o 51 dibplas uolusd feusly 25l o, oiile
2 oY b Jleel bl Lo zoe dolas 90 4y oS> alolee
Gkl 0 Lalpd )3 JSio hous 5l esliiul 5 zge slaalslas
Jya ©lp sl Caws  Gloj yialyb as s Y JESl slas o
oolaxwl Cagniard-Pekeris oo 2ol g, 51 oylo slad jo Fuly
05 &b eoptanle 9,80, 50 b ecales 59 9 e re S
A gl sl Gl s jee
il clocosdye ol |, Wb Laims lulod grasly «pilor 3o -
waioly glagealy 08 Sl g gl Fiul @oe 005 g @te (5513
Sl 5L sl |l (55, 5 s (Bl g @38 S s
e et e el b plass B
Dgy 04l S5l (gdmds Sl dgiwV! Plue (gl 9ST
3 oo Ll dlas soae o w0 gzl sl ()5 @l miee 9,25 =Y
3 olpd g als gl ad Saluogii¥l ganan Lo
2l Gl o5 sl (e elil (B, b Logas (ploj oS
2l los ) L8, 5385 9 S pesle U s szl by,
Sibese pR OBl 1) (x5 b gy (Sl 0s5 STl
gl OByt e bond gligunl )5 @l (i Ll
OB il c(ame (e haw 3l (Seelind (,135)1 4 Ladps
5 chw o)l (Seelus ©IS)L Hl e e Gloa Jolo L
55 008 Jlosl (Saliys (6,138, 4y L grlas (S0 i 0,59,
e gl b Aol ks dslin ool o plogl cayoma o] J5ho
il S 05, b lagealy JolS gllail 51 28 Slol 4 o
el oo 03ld ialed 5 JSSI 40 sawl Cawss =l S
W8 Ll 5o 1) Lades (g0 @SB s (V) S50 -l
ools plas +IVO (ygmlyy o pd hls mhaw 2 03)ly 5 yete lanse
sl 00 48,8 La5 8 0i 5 (6,08,1,8 (6lp oglite ConnBge 30 ans
sl eaie olS (VAVF) gl asgi oo a5l gl s alols gyl

Lades maw elad g 03B (1S poas Sloj a6 (Y)JS::’_%’
Condgo Comad ol 03,5 &l 35 aie wlunge oSB L 350 Co ||

s o f z . e e (=
] 00l 5,8 ’/()bﬁ‘ﬁ(;ZO.S)GyowI;quLgﬁf)‘)B

2olie hls gwly colpo 6l p s
6ol5 (g S g ol Lot

=

")‘ CJL\J » ol Cawdo C"L”" o
el ko SlS (Y4 19)

«5iy0 =izl Gig, gamans Seulusgiw¥l 0y )5 &b gundS gejly
Olej 0397 «rdanle 9,09, ( JSio Jooud (Y oo Lades



surface due to a dynamic loading applied at a given surface,
the displacements beneath the ground surface due to a
dynamic loading applied at the ground surface, and finally
the displacements along of the half-space ground surface
due to the dynamic loading applied beneath the ground
surface. Comparison of the calculated results with those
reported in the technical literature indicates an excellent
agreement between them. Some of the obtained results are
demonstrated in the following pictures:

a- Figure (1) shows the vertical displacement beneath the
half-space ground surface due to a vertical Heaviside-type
concentrated load on the ground surface. The Poisson’s
ratio of the medium is 0/25. Two distinct positions were
considered for the placement of the receiver. As can be seen,
comparison of the calculated results with those presented by
Johnson (1974) indicates a perfect agreement.

b- Figure (2) presents the time histories of the vertical and
radial displacement of the half-space ground surface due
to the vertical Heaviside-type concentrated load beneath
the ground surface. The ratio of the source to the receiver’s

location (E) was assumed to be 0/5. Different values for
the Poisson’s Ration were considered. As can be seen, the
calculated results are completely consistent with the results
presented by Emami and Eskandari Qadi (2019).

Keywords: Green functions, Three-dimensional electro-
dynamics, Laplace transform, Hankel transform, Mindlin
approach, Time domain
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